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Introduction

MBMA of combined individual and aggregate data:
strategies and issues

Why combine individual and aggregate data?
Pros/cons of aggregate data (AD) MA
Pros/cons of individual patient data (IPD) MA

Methods
Focus on nonlinear and longitudinal data models
Two-stage approach
Hierarchical/multilevel modeling approaches
Analytic approximation of aggregate data likelihood
Imputation of aggregate data likelihood by simulation

Closing discussion
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Why combine individual and aggregate data? Pros/cons of aggregate data (AD) MA

Pros/cons of aggregate data (AD) MA

Pros
Relatively easy access to data from public sources

Cons
Not well-suited for inferences about patient-level covariates.

Ecological bias/fallacy
Aggregate covariate data describes a narrower range of values than
individual covariate data

For nonlinear models the relationship between the dependent
variable and the covariates, e.g., dose or time, is not described by
the same function for AD and IPD.
Usually no info about correlations among multiple outcomes
Model usually not suitable for prediction/simulation of individual
outcomes
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Why combine individual and aggregate data? Pros/cons of aggregate data (AD) MA

Ecological bias/fallacy

Errors resulting from attempting to infer individual properties
based on aggregate data

Simpson’s paradox
May happen when trial outcomes differ for reasons not captured in
the model or even identifiable with AD, e.g., when the model does
not include influential covariates (confounding).

●

●

●

2.8

3.0

3.2

3.4

5.0 5.5 6.0 6.5
Sepal.Length

S
ep

al
.W

id
th Species

●
●
●

setosa

versicolor

virginica

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

●

●

●

setosa

versicolor

virginica

c©2016 Metrum Research Group MBMA of individual and aggregate data 26 October 2016 4 / 29



Why combine individual and aggregate data? Pros/cons of aggregate data (AD) MA

Ecological bias/fallacy

Errors resulting from attempting to infer individual properties
based on aggregate data
Simpson’s paradox

May happen when trial outcomes differ for reasons not captured in
the model or even identifiable with AD, e.g., when the model does
not include influential covariates (confounding).

●

●

●

2.8

3.0

3.2

3.4

5.0 5.5 6.0 6.5
Sepal.Length

S
ep

al
.W

id
th Species

●
●
●

setosa

versicolor

virginica

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

●

●

●

setosa

versicolor

virginica

c©2016 Metrum Research Group MBMA of individual and aggregate data 26 October 2016 4 / 29



Why combine individual and aggregate data? Pros/cons of aggregate data (AD) MA

For nonlinear models IPD and AD may not be
described by the same function

In MBMA it is common to apply models originally developed to
describe responses in individuals to data consisting of summary
statistics, particularly sample means.
However our usual PK and PD models are strictly relevant only for
describing responses in individual organisms—not for summary
stats for groups.
Nonlinear individual models do not “collapse” to the same model
for sample means except in special cases, e.g., when the model
function is linear with respect to individual-specific parameters.
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Why combine individual and aggregate data? Pros/cons of aggregate data (AD) MA

Example: Emax model
Suppose the dose-response in an individual is described by an Emax model.

The mean dose-response for n patients will not be an Emax model except in the special
case where all patients share the same ED50.

Dose-response in the i th individual (neglecting residual variation to keep things
simple):

Ei (D) =
Emax,i D

ED50,i + D

Mean dose-response in n individuals:

E (D) =
1
n

n∑
i=1

Ei (D) =
1
n

n∑
i=1

Emax,i D
ED50,i + D

6=
1
n

(∑n
i=1 Emax,i

)
D

ED50 + D
unless ED50,i = ED50 for all individuals
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Why combine individual and aggregate data? Pros/cons of individual patient data (IPD) MA

Pros/cons of individual patient data (IPD) MA

Pros
“Gold standard”, particularly for longitudinal data
Can support inferences about:

Patient-level covariates
Correlations among outcomes

Model is suitable for prediction/simulation of individual outcomes.

Cons
Access issues

IPD may not be obtainable for all trials of interest.
May introduce a form of selection bias

Potentially much more time consuming
Mainly due to delay in obtaining data from external sources
May not be feasible for time critical decision making

More computationally demanding
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Why combine individual and aggregate data? Pros/cons of individual patient data (IPD) MA

Why combine individual and aggregate data?

Addition of AD to enhance/extend inferences from
IPD analysis

Good reasons
Indirect comparisons of treatment effects

Particularly when comparators are only available in AD

Quantifying effects of other group-level covariates (when AD is
available for the relevant groups)
Quantifying inter-trial variability
Improving precision of some model parameter estimates

Not-so-good reasons
Quantifying effects of patient-level covariates
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Why combine individual and aggregate data? Pros/cons of individual patient data (IPD) MA

Why combine individual and aggregate data?

Addition of IPD to enhance/extend inferences from
AD analysis

IPD required to inform correlations among individual-level
outcomes and covariates
IPD required to quantify effects of patient-level covariates
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Methods

Methods

Focus on nonlinear and longitudinal data models
Methods for linear models are well-covered in the statistics
literature [1, 2, 3, 4, 5, 6].
Two-stage approach
Hierarchical/multilevel modeling approaches, e.g., hierarchical
related regression
Approximating or imputing the AD likelihood based on the IPD
model

Analytic approximation of AD likelihood
Imputation of AD likelihood by simulation
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Methods Two-stage approach

Two-stage approach

1 For IPD calculate AD statistics
2 Apply suitable AD meta-analysis method [3]

Same limitations as AD meta-analysis
Probably sufficient if the primary objective is treatment
comparison.
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Methods Hierarchical/multilevel modeling approaches

Hierarchical/multilevel modeling approaches

Model with a nested hierarchy: observation within patient within
study [7, 8, 9, 10, 11]

IPD = function of individual and observation level parameters
AD = function of study level parameters

Hierarchical related regression [8, 9, 10, 11]
Variation in which related but somewhat different models are used
for IPD and AD.
IPD model includes patient level covariates.
AD model does not.
Both models share same treatment effect parameter(s).
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Methods Approximating the AD likelihood based on the IPD model

Approximating or imputing the AD likelihood based on
the IPD model

A conceptually attractive approach to combined analysis of IPD
and AD is use a common IPD model to analyze all of the data.

Consider the individual measurements contributing to the AD as
missing data.
Perform a Bayesian analysis in which all unknowns including those
missing individual measurements are parameters of the posterior
distribution.

Very challenging computational problem—usually impractical due
to:

Massive increase in dimensionality of the joint posterior distribution.
Large number of poorly identifiable parameters.

So we look to approximations of such an approach.
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Methods Analytic approximation of aggregate data likelihood

Analytic approximation of aggregate data likelihood

We begin with a hierarchical model for IPD with with 3 levels of
variation: inter-trial, inter-arm, and residual.

The AD model (likelihood) is derived from the IPD model
[12, 13, 14].

Likelihoods for both sample means and standard deviations
Both the inter-arm and residual variances should be adjusted for
sample size.
In the case where the individual data model is linear with respect to
normally-distributed random effects, the derivation is exact.
For the general nonlinear case it is an approximation in 3 senses.

The sampling distributions are approximated as normal for the mean
and gamma for the variance.
The AD model is approximated using the IPD model in which the
variances of the inter-arm random effects are sample size adjusted
inter-patient variances.
The marginal variance is approximated via the delta method.

May be implemented in the usual tools, e.g., NONMEM, BUGS,
Stan, etc.
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Methods Analytic approximation of aggregate data likelihood

Objective:
Develop a model to describe the longitudinal progression of ADAS-cog
in Alzheimer’s disease patients in both natural history and randomized
clinical trial settings, utilizing both IPD and AD.
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Methods Analytic approximation of aggregate data likelihood

MBMA of longitudinal ADAS-cog IPD and AD

IPD
CAMD database: 3,223 patients
ADNI database: 186 patients

AD
Extracted from 73 literature references: 17,235 patients

IPD was most informative about disease progression and
patient-level covariates.
AD contributed information required for inferences about the
effects of galantamine, donepezil and rivastigmine.
Resulted in a model suitable for:

Simulating individual patient outcomes, e.g., clinical trial
simulations,
Making inferences about the comparative efficacy of galantamine,
donepezil and rivastigmine.
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Methods Analytic approximation of aggregate data likelihood
individual predictions: donepezil
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Methods Imputation of aggregate data likelihood by simulation

Imputation of aggregate data likelihood by simulation

An approach that may more closely approximate the AD likelihood
is to impute it from simulations of individual data [15, 16, 17, 18].
For each treatment arm suppose you have a set of means
y i , i = 1,2, . . . ,nT of longitudinal data for N individuals.
Impute the joint likelihood of the y i ’s by:

Simulating individual data for a large number of individuals,
Calculating the mean vector Ms and covariance matrix Σs of the
simulated values,
Approximating the joint likelihood of y i , i = 1,2, . . . ,nT as
multivariate normal: N

(
Ms,

Σs
N

)
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Methods Imputation of aggregate data likelihood by simulation

https://arxiv.org/abs/1602.02055

Details methodology for joint analysis of IPD and AD from one
study each [17, 18].
Readily generalized to multiple IPD and AD studies.
The AD data likelihood is imputed by simulation.
That is embedded within an overall Bayesian analysis method
involving:

Analysis of IPD by HMC (Stan),
Analysis of AD data by importance sampling, and
Iterative updating of both IPD and AD analyses by expectation
propagation.
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Methods Imputation of aggregate data likelihood by simulation

Weber et al approach to imputation of aggregate data
likelihood by simulation

Simulation studies indicate good performance on a range of
problems including PKPD applications requiring numerical
solution of ODEs.
Avoids most of the approximations used for the previously
discussed analytic approximation approach.
The main remaining approximation is use of the multivariate
normal for the joint likelihood of longitudinal means.
Expectation propagation introduces additional approximations,
and
Requires substantial custom programming to implement the
expectation propagation and importance sampling methods.
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Methods Imputation of aggregate data likelihood by simulation

Weber et al approach to imputation of aggregate data
likelihood by simulation

Stay tuned: The authors have since developed and tested a version
2.0 that is a simpler implementation within Stan.

No expectation propagation.
No importance sampling.
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Summing up

Summing up: Role of MBMA of combined AD and IPD

Addition of AD to enhance/extend inferences from IPD analysis is
most valuable for:

Indirect comparisons of treatment effects when key comparators
are not represented in IPD.
Quantifying inter-trial variability

Addition of IPD to enhance/extend inferences from AD analysis is
most valuable for

Estimating correlations among individual-level outcomes and
covariates.
Quantifying effects of patient-level covariates
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Summing up

Summing up: Methods for MBMA of combined AD and
IPD

Analytic approximation of aggregate data likelihood
Easiest to implement with familiar tools.
Potentially questionable approximation of AD model with IPD
model.
Could cause unacceptable estimation error/bias, particularly with
highly nonlinear models.

Imputation of aggregate data likelihood by simulation
More plausible approximation of AD likelihood.
Harder to implement with standard PMX tools.

A hierarchical related regression (HRR) approach is applicable to
both methods

May be advisable to exclude patient-level covariates from AD model
to reduce risk of ecological bias.

The absolute and relative performance of these methods remains
an open research question.
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Apples and oranges

Of apples and oranges, file drawers
and garbage: Why validity issues in
meta-analysis will not go away

Apples and oranges (and pears, oh
my!): The search for moderators in
meta-analysis

Apples and apples or apples and
oranges? A meta-analysis of objective
and subjective measures of
salesperson performance

Apples, oranges, and placebos:
Heterogeneity in a meta-analysis of
placebo effects

Meta-analysis: Can we mix apples
and oranges?

Multivariate meta-analysis: modelling
the heterogeneity mixing apples and
oranges; dangerous or delicious?

Can a meta-analysis that mixes apples
with oranges be used to demonstrate
that levosimendan reduces mortality
after coronary revascularization?

Can a Meta-Analysis That Mixes Apples With
Oranges Be Used to Demonstrate That Pancreatic
Enzymes Do Not Decrease Abdominal Pain in
Patients With Chronic Pancreatitis?

Meta-analysis: apples and oranges, or fruitless

Meta-analysis of anatomic resection versus
nonanatomic resection for hepatocellular
carcinoma: are they comparing apples with
oranges?

Multivariate meta-analysis: Modeling the
heterogeneity; Mixing apples and oranges;
dangerous or delicious?

The most critical question when
reading a meta-analysis report: Is it
comparing apples with apples or
apples with oranges?

Meta-analysis of bone marrow
transplantation treatment studies:
mixing ’apples and oranges’

Comparing Apples to Oranges in
Meta-analysis Studies

Mixing apples and oranges and other
methodological problems with a
meta-analysis of long term
psychodynamic psychotherapy

Meta-analysis: Adding apples and
oranges?

Meta-analysis of anatomic resection
versus nonanatomic resection for
hepatocellular carcinoma: are they
comparing apples with oranges?

Meta-analysis of survival in
mesothelioma: can we mix apples and
oranges?
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