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Objective
Simultaneous estimation of identifiable parameters in systems pharmacology models can be
challenging. We use a calcium/PTH/bone systems pharmacology model1, with 44 differential
equations and 171 parameters to explore:

1. the ability to use open-source methods: R (3.2.1, on Comprehensive R Archive Network
(CRAN)), package mrgsolve2 and optimization packages to simultaneously estimate mul-
tiple parameters within this model.

Methods

• Simulate denosumab (DMAB) con-
centration time (PK) profiles9, 100
replicates

– 10, 60, 210 mg doses Q6M x 4; 4 sub-
jects per dose

– Error was 21% CV4

• Estimate DMAB PK
– Linear Clearance (CL)

– Central distribution volume (VC)

– Max nonlinear clearance (VMAX)

– Peripheral distribution volume (VP)

• Summarize performance
– Parameter estimates

– Percent prediction error (%PE)

– Run times

• Optimizers tested
– minqa::newuoa

– stats::optim (Nelder-Mead)

– DEoptim::DEoptim

– MCMCpack::MCMCmetrop1R

Summary of Optimizers Tested

Function Description (unitless) Attributes

minqa::

newuoa5
Forms a trust-region by models of interpolation and searches within
this space for minimum function value

can set trust region radius but easily falls into local min-
imum

stats::optim

(Nelder-Mead) 6 uses simplex method that does not require gradients
gives hessian but cannot specify bounds so for difficult
problem it can slip into unsolvable variable space

DEoptim7

A genetic algorithm which starts with a population of parameters
drawn from a uniform distribution. The population is transformed
and the best set of parameters is carried into the next iteration. New
populations are generated & process is repeated for the specified
number of iterations.

can be easily parallelized, good for stochastic, noisy
functions, or those difficult to differentiate, takes
boundary conditions, but slow

MCMCpack::

MCMCmetrop1R8

Calls stats::optim first to generate a hessian as a starting point from
which to sample. Then pulls samples from a continuous distribution
using a random walk Metropolis algorithm

user can supply a hessian matrix from a previous op-
timization step to help speed up algorithm and it is a
robust method for difficult problems but slow
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Figure 1: Model schematic: integration of pharmacokinetic
model (right hand box) for denosumab (a fully human mon-
oclonal antibody that binds to RANKL with high affinity) af-
fects bone remodeling within this system.
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Figure 2: Simulated DMAB PK following Q6M dosing

Example Objective Function
par: parameters, d: data set, n: parameter names

Example Call to Optimizer

Results: Compare/Contrast Optimization Methods

Method Time [min] CL [ml/hr] VC [ml] VMAX [ng/hr] VP [ml]
newuoa 11 (16) 2.803 (1.0) 2447 (3.9) 3157 (1.5) 1296 (5.2)
Nelder-Mead 7 (24) 2.804 (1.0) 2448 (3.9) 3158 (1.5) 1295 (5.3)
DEoptim 653 (3) 2.803 (1.0) 2446 (4.0) 3160 (1.6) 1296 (5.7)
MCMC 90 (11) 2.802 (1.1) 2453 (3.9) 3156 (1.5) 1293 (5.3)

Table 1: Runtimes and DMAB PK estimates as median (%CV) over 100 replicates for each estimation method. DEoptim
was run for 500 iterations and MCMC was run for 1000 production iterations after 1000 burnin samples. stats::optim
(Nelder-Mead) was called with maxiter=1500 as a part of the MCMC run to generate a proposal density.
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Figure 3: Parameter estimates for each optimization method (expressed as percent prediction error; left), parameter
estimates versus iteration for the DEoptim optimization method (center), and posterior samples for the post-burnin
phase for the MCMC optimization method (right).

Conclusion
All four estimation methods tested resulted in relatively efficient and precise parameter estimates for the

systems pharmacology model. DEoptim and MCMC are gradient—free methods that can potentially facil-

itate larger numbers of simultaneous estimable parameters but took the longest runtime compared to the

newoua and nelder methods for estimating the four parameters in this example. Notably, these methods

are all open-source, flexible, and easily-parallelized within R and so are well-suited for additional consid-

eration in situations of added complexity, i.e. within the context of a priori and a posteriori identifiability.

mrgsolve is free, open-source software
http://www.github.com/metrumresearchgroup/mrgsolve

https://github.com/mrgsolve/examples
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