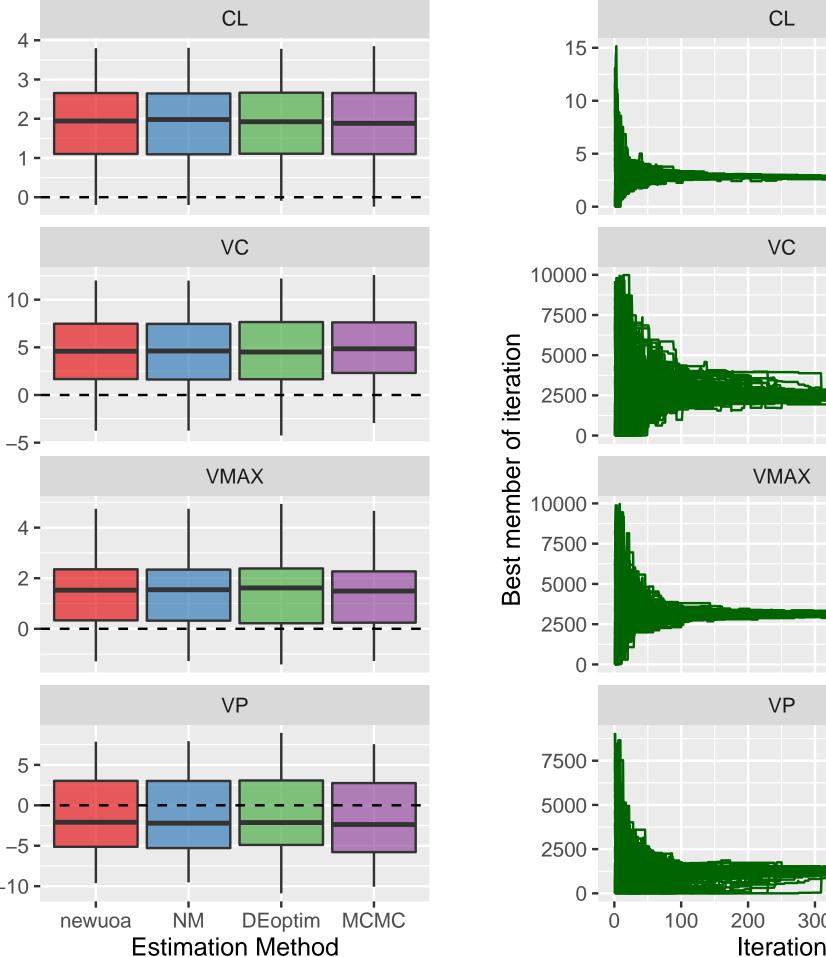
Comparing the Performance of Four Open-Source Methods for Multiple Parameter Estimation in a Systems Pharmacology Model

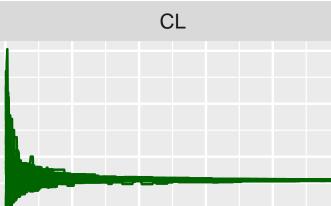
Rena J. Eudy, Ph.D.; Matthew M. Riggs, Ph.D.; Kyle T. Baron, Pharm.D., Ph.D. Metrum Research Group, LLC, Tariffville, CT, USA

Objective

Simultaneous estimation of identifiable parameters in systems pharmacology models can be challenging. We use a calcium/PTH/bone systems pharmacology model¹, with 44 differential equations and 171 parameters to explore:

1. the ability to use open-source methods: R (3.2.1, on Comprehensive R Archive Network (CRAN)), package *mrgsolve*² and optimization packages to simultaneously estimate multiple parameters within this model.

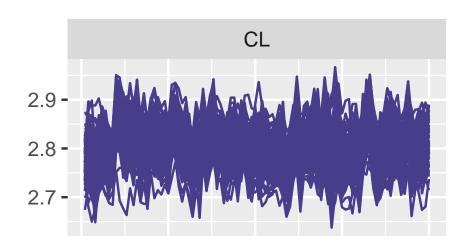

Methods


- Simulate denosumab (DMAB) concentration time (PK) profiles⁹, 100 replicates
 - 10, 60, 210 mg doses Q6M x 4; 4 subjects per dose
- Summarize performance
 - Parameter estimates
 - Percent prediction error (%PE)

Results: Compare/Contrast Optimization Methods

Method	Time [min]	CL [ml/hr]	VC [ml]	VMAX [ng/hr]	VP [ml]
newuoa	11 (16)	2.803 (1.0)	2447 (3.9)	3157 (1.5)	1296 (5.2)
Nelder-Mead	7 (24)	2.804 (1.0)	2448 (3.9)	3158 (1.5)	1295 (5.3)
DEoptim	653 (3)	2.803 (1.0)	2446 (4.0)	3160 (1.6)	1296 (5.7)
MCMC	90 (11)	2.802 (1.1)	2453 (3.9)	3156 (1.5)	1293 (5.3)

Table 1: Runtimes and DMAB PK estimates as median (%CV) over 100 replicates for each estimation method. DEoptim was run for 500 iterations and MCMC was run for 1000 production iterations after 1000 burnin samples. stats::optim (Nelder-Mead) was called with maxiter=1500 as a part of the MCMC run to generate a proposal density.



VC

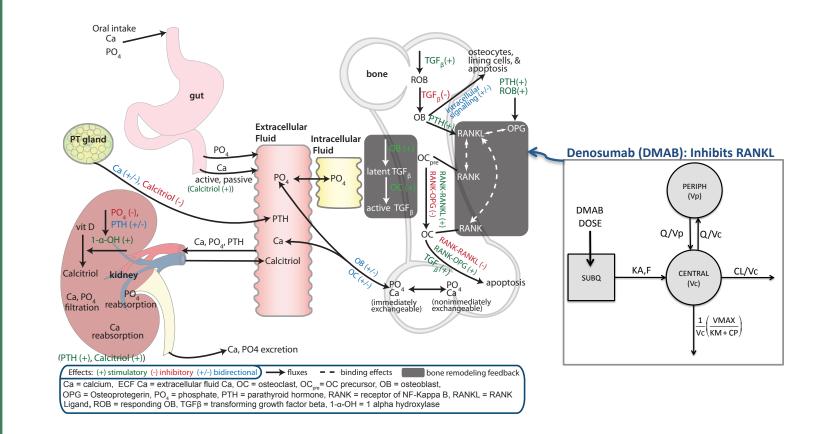
VP

300

- Error was 21% CV⁴

• Estimate DMAB PK

- Linear Clearance (**CL**)
- Central distribution volume (VC)
- Max nonlinear clearance (VMAX)
- Peripheral distribution volume (VP)


Summary of Optimizers Tested

– Run times

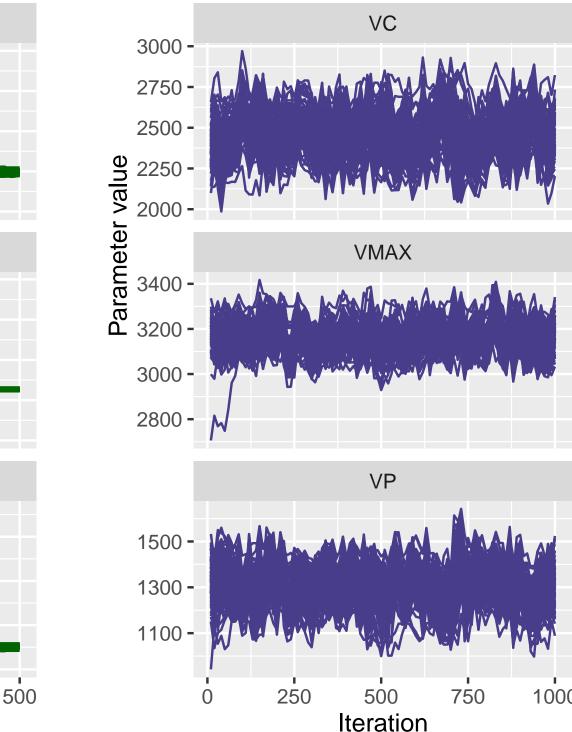
• Optimizers tested

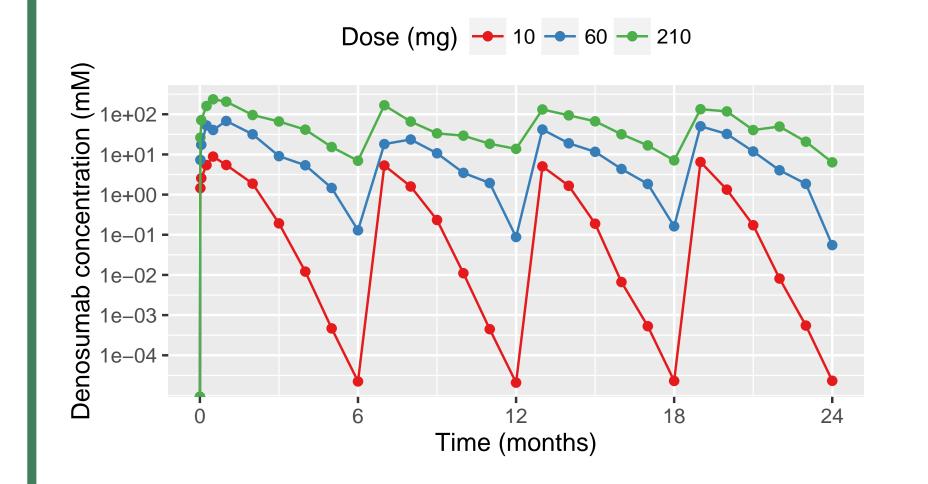
- minqa::newuoa
- stats::optim (Nelder-Mead)
- DEoptim::DEoptim
- MCMCpack::MCMCmetrop1R

Function	Description (unitless)	Attributes	
minqa:: newuoa ⁵	Forms a trust-region by models of interpolation and searches within this space for minimum function value	can set trust region radius but easily falls into local min- imum	
stats::optim (Nelder-Mead) ⁶	uses simplex method that does not require gradients	gives hessian but cannot specify bounds so for difficult problem it can slip into unsolvable variable space	
DEoptim ⁷	A genetic algorithm which starts with a population of parameters drawn from a uniform distribution. The population is transformed and the best set of parameters is carried into the next iteration. New populations are generated & process is repeated for the specified number of iterations.	can be easily parallelized, good for stochastic, noisy functions, or those difficult to differentiate, takes boundary conditions, but slow	
MCMCpack:: MCMCmetrop1R ⁸	Calls stats::optim first to generate a hessian as a starting point from which to sample. Then pulls samples from a continuous distribution using a random walk Metropolis algorithm	user can supply a hessian matrix from a previous op- timization step to help speed up algorithm and it is a robust method for difficult problems but slow	

Example Objective Function parameters, d: data set, n: parameter names

<- function(par,d,n,pred=FALSE) ols




Figure 3: Parameter estimates for each optimization method (expressed as percent prediction error; left), parameter estimates versus iteration for the DEoptim optimization method (center), and posterior samples for the post-burnin phase for the MCMC optimization method (right).

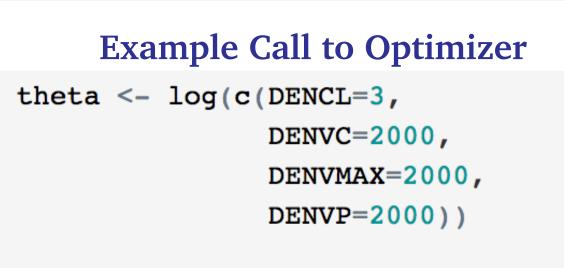
Conclusion

(%)

All four estimation methods tested resulted in relatively efficient and precise parameter estimates for the

Figure 1: Model schematic: integration of pharmacokinetic model (right hand box) for denosumab (a fully human monoclonal antibody that binds to RANKL with high affinity) affects bone remodeling within this system.

par <- setNames(lapply(par,exp),n)</pre>


out<mod %>% param(par) %>% data_set(d) %>% mrgsim(obsonly=TRUE, Req="DENCP"

if(pred) return(out)

log.y <- log(d\$DENmMOL)</pre>

log.yhat <- log(out[["DENCP"]])</pre>

return(sum((log.y-log.yhat)^2))

fit <- newuoa(par=theta,fn=ols,</pre> d=d,n=names(theta)) systems pharmacology model. DEoptim and MCMC are gradient—free methods that can potentially facilitate larger numbers of simultaneous estimable parameters but took the longest runtime compared to the **newoua** and **nelder** methods for estimating the four parameters in this example. Notably, these methods are all open-source, flexible, and easily-parallelized within R and so are well-suited for additional consideration in situations of added complexity, i.e. within the context of a priori and a posteriori identifiability.

mrgsolve is free, open-source software

http://www.github.com/metrumresearchgroup/mrgsolve https://github.com/mrgsolve/examples

References

- Peterson MC, & Riggs MM. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone, 46(1), 49–63. 2010
- Baron KT. mrgsolve: Simulation from ODE-based population PK/PD and systems pharmacology models, 2015. R package version 0.6.001.
- Peterson MC & Riggs MM. Predicting nonlinear changes in bone mineral density over time using a multiscale systems pharmacology model. CPT: PSP, 1(e14), 2012
- Dirks NL & Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49 (2010):633–59
- Powell, MJD, Developments of newuoa for minimization without derivatives, IMA Journal of Numerical Analysis, 28:649–664, 2008
- Nelder JA & Mead R, A simplex method for function minimization, Computer J, 7(4), 308–313, 1965
- Mullen KM et al. ??DEoptim: An R package for global optimization by differential evolution, J Stat Soft, 40(4),1–26, 2011
- Martin AD et al, ??MCMCpack: Markov chain Monte Carlo in R, ??J Stat Soft, vol. 42, pp. 1–21, 6 2011
- Peterson M et al. A population pk/pd model describes the rapid, profound, and sustained suppression of urinary n-telopeptide following administration of amg 162, 9. a fully human monoclonal antibody against rankl, to healthy postmenopausal women, The AAPS Journal, 24, 2004.

Figure 2: Simulated DMAB PK following Q6M dosing