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An eminent physicist has remarked that the future truths of Phys-
ical Science are to be looked for in the sixth place of decimals.

Albert A. Michelson, 1894 [1]

Scientists are trained to recognize that correlation is not causa-
tion. … Petabytes allow us to say: ‘Correlation is enough ’.

Chris Anderson, 2008 [2]

We intend, in this editorial, to highlight some key ele-
ments constituting Big Data, and to reflect on associated chal-
lenges and opportunities for clinical pharmacology. Two of
the initial challenges are evidence of perceptual incongruity
encumbering Big Data: (1) its definition and (2) the pretence
of its emergence as a 21st century zeitgeist in science.

Its definitions vary. Our working description of choice is
by the Oxford Dictionaries [3], to wit: extremely large data sets
that may be analyzed computationally to reveal patterns, trends
and associations, especially relating to human behaviour and
interactions.

The ‘zeitgeist’ reference is to the school of thought that
Big Data constitutes a philosophical revolution in science,
but this seems a far-fetched embroidery of its capacity and,
thus, its epistemological place in science. The ‘eminent phys-
icist’ referred to byMichelson in the epigraph is thought to be
Lord Kelvin and, perhaps the source of the quote
misattributed to Kelvin: ‘There is nothing new to be discov-
ered in physics now. All that remains is more and more pre-
cise measurement’. There is no doubt that both statements
reflected the view of physics at the close of the 19th century,
that there was no longer a need for theory, just data analysis.
Enter Einstein, Heisenberg et al.

A little over a century after the predicted demise of theory,
the Anderson quote in the epigraph referred to Big Data in an
article entitled The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete. Notwithstanding that the article
appeared in a popular magazine, its impact was and still is sig-
nificant, having been quoted, with both assent and dissent,
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in numerous scholarly publications and frequently touted
in open lecture presentations [4]. Big Data is now commonly
referred to as the Fourth Paradigm [5], wherein the first,
second and third are empirical, theoretical and computa-
tional (simulation), respectively. Further elaboration of that
grouping is not within the scope of this editorial except to
say that, if the intended use of the term ‘paradigm’ is in the
sense proffered by Kuhn [6], then the group is a strange ad-
mixture, indeed. We are in full agreement with Mazzochi [7]:

‘The tendency to conflate the undisputed usefulness of
Big Data –which above all, is an informational tool –with
its presumed ability to provide full scientific understand-
ing, sometime leads Big Data specialists to overstate their
claims’.

The pitfall that awaits the expectation that a massive data
deluge renders hypothesis and experimentation as remnants
of an obsolete logic of scientific discovery is the expectation
that Big Data are in some way a reflection of uniform data
gathering. As noted by Leonelli [8]:

‘Big Data that are made available through data bases for
future analysis turns out to represent highly selected phe-
nomena, materials and contributions, to the exclusion of
the majority of biological work. What is worse, this selec-
tion is not the result of scientific choices, which can there-
fore be taken into account when analyzing the data.
Rather, it is the serendipitous result of social, political,
economic and technical factors, which determines which
data get to travel in ways that are non-transparent and
hard to reconstruct by biologists at the receiving end’.

This statement cautions that the vast sources of informa-
tion can provide a great wealth of insight while simulta-
neously providing significant challenges to reality. Some of
these concerns have been dismissed or considered as
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minimized. Yet they persist as substantial hurdles that must
considered when exploiting the Big Data information pool.
These challenges include the supposition of an n = all infor-
mation capture (presumably obviating the need for statis-
tics), validly linking information across disparate sources,
whether to implement a supervised vs. unsupervised statisti-
cal learning approach in analyzing data sources, how to
map known physiological or pharmacological interactions
as a scaffold for these, assumption of a static system, the asser-
tion that all necessary empirical observations have been
made and that the data collection is complete and the asser-
tion that correlation is sufficient and that causation is no lon-
ger necessary for valuable information to be extracted from
Big Data datasets.

In more traditional sample size experiments, challenges
such as imbalanced experimental designs, missing data, lack
of randomization or adequate controls, multiplicity of com-
parisons, etc. are difficult enough to manage. Increasing the
size of the dataset does not necessarily eliminate these issues.
In Big Data analyses, n = all is a condition where it is assumed
that one has collected all of the data (or perhaps more apt, all
of the information that exists in a particular area). Thus, sam-
pling bias is of no concern because one has all possible sam-
ples. This is fanciful when measured against reality, and
absurd as a default assumption. As a matter of concern,
accepting this supposition raises the likelihood that sampling
issues may actually be magnified in a Big Data analysis. David
Spiegelhalter notes:

‘There are a lot of small data problems that occur in Big
Data...They don’t disappear because you’ve got lots of
the stuff. They get worse’ [9]

Collection of all available data does not necessarily ensure
that all possible data points have been captured. Important
sampling bias may still exist. For example, scientists at
Rutgers University considered the possible scenario where
government agencies might make decisions about disaster re-
lief based on social media data. Their analysis of Twitter usage
during Hurricane Sandy led to the conclusion that the bor-
ough ofManhattan suffered the worst damage and that party-
ing peaked after the storm subsided. Of course, this was the
entirely inaccurate result of biased data collection. The Big
Data dataset contained relatively few tweets from themost se-
verely affected coastal areas because of power outages, failing
cell phone batteries and a general trend toward lower social
media usage in those communities compared with Manhat-
tan [10] When linking information across disparate sources,
consideration must be given to the type of data, the data col-
lection process, the level of detail of the data and the time ep-
och when the data were collected. All of these factors can
potentially confound the analysis.

The choice of a supervised vs. an unsupervised learning
approach hinges on whether a target outcome that is desired
to be predicted. A supervised learning approach requires hav-
ing system output (target outcome) and then evaluation of
possible predictors. These approaches range from LASSO, lin-
ear regression through to more complex approaches such as
support vector machines and classification algorithms for
the selection of optimal predictors [11]. Many of these more
sophisticated supervised learning approaches are automated,
leveraging the power of machine learning to facilitate the ex-
ploration of the system.

Unsupervised learning approaches, on the other hand, set
out to evaluate the relationships among a set of variables in a
dataset without attempting to predict anything in particular.
Clustering algorithms or modularity analyses are those ap-
proaches that reveal interrelationships among variables in a
dataset and can be useful in understanding how information
groups together. However, these analyses are limited to corre-
lational assessments and do not consider the underlying
mechanistic constraints of the system.

Mapping physiological or pharmacological information
as a scaffold can be a very powerful means of organizing infor-
mation in datasets. In particular, it can be a framework related
to cellular functioning or, perhaps, to a pharmacologic path-
way where data can be applied in a structured sense to orga-
nize the information gleaned on the basis of what is known
about the system.

These models also assume the system observed is static. By
creating a large network of correlations, there is little informa-
tion on mechanism or the fundamentals of the system that
would allow for it to be utilized for prediction. This makes Big
Data predictions and models vulnerable to changes in the sys-
tem. One may develop a predictive model in a particular set of
data that arose under very specific conditions. If those condi-
tions change, or if the system changes dynamically, the model
will no longer be able to predict outcomes adequately. This is
what was observed with the Google Flu predictor where search
terms were analyzed to determine and compared with flu out-
breaks [12]. It was a robust predictor at the outset. Publicizing
the predictor was followed by a subsequent two-fold over-pre-
diction of influenza-like along with complete misses of flu out-
breaks (including the non-seasonal A-H1N1 pandemic in
2009). Plausibly, knowledge of the predictor changed what indi-
viduals were searching for and therefore confused the classifier/
predictive algorithm. Lazer et al. point out that ‘quantity of data
does not mean that one can ignore foundational issues of mea-
surement and construct validity and reliability and dependen-
cies among data’ attributing this issue as part of the problem
with the Google Flu predictor [12].

This is not to distract from the fact that Big Data usher in
an information age that is and will continue to be will no
doubt be transformative by the power it affords the scientific
enterprise. For example:

Lang Li at the Center for Computational Biology and Bio-
informatics, Indiana University School of Medicine focuses
on identification of drug interactions in the context of per-
sonalized medicine. The first step in his work was to establish
an ontology and corpus of information using text-mining
techniques that identify likely drug–drug interactions by
searching abstracts of publications in PUBMED. These hits
were assessed for both the intensity of the interaction re-
ported as well as the significance level. Once pruned, the
most interesting interactions predicted using these Big Data
text mining approaches were investigated further [13]. In
the case of a loratadine and simvastatin interaction identified
using this technique, evaluation of interaction at various CYP
enzymes and transporters was undertaken. When these as-
sessments did not result in a mechanistic explanation of the
possible interaction, Han et al. went on to examine interac-
tions between these compounds at the level of the muscle cell
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[14]. What was identified was a pharmacodynamic interac-
tion at the level of the muscle tubule that otherwise would
not have been known. This work contributed to knowledge
of mechanisms that may help to understand the high rates
of myopathy observed with statin treatment.

Another example is the studies by Bernhard Palsson and co-
workers at UCSD. They apply systems frameworks to -omics
data sources. Their work has facilitated an understanding of cel-
lular dynamics with such detail that they have predicted across
scales using this approach ‘frombacteria tohuman’. Thiswas ac-
complished using non-linear optimization in conjunction with
the -omics datasets that provide the constraints necessary to fo-
cus these large quantities of information into useful scaffolds
that further increase the insight that can be discovered. Recent
accomplishments include publications reporting ‘systems biol-
ogy guided identification of synthetic lethal gene pairs and its
potential use to discover antibiotic combinations’ [15] and the
determination of ametabolic signature that facilitates the evalu-
ation of quality of a unit of red blood cells [16]. The red blood
cell work utilized an approach that combined endothelial
markers and clinical outcomes to develop an algorithm that de-
termines the red blood cell unit quality. These are significant
challenges, the opportunity to identify novel antibiotic combi-
nations that may have activity in resistant organisms and the
means of evaluating the likely utility of a unit of red blood cells
with respect to clinical outcomes, and highlight how Big Data
can be leveraged to address critical public health problems.

Both of these examples illustrate the utility of Big Data
techniques for generating hypotheses or identifying gaps in
current scientific knowledge, but they also demonstrate the
importance of going beyond signal detection and exploring
potential explanatory and mechanistic underpinnings for
their findings. These findings are often extended with specific
experiments to refine findings and provide new insights that
make important contributions to their respective fields.

Big Data provide enormous opportunities for clinical
pharmacology as a nexus to help guide and provide frame-
works that leverage this resource, but with full cognizance
of limitations. Accordingly, while ‘cheerleading’ from the
popular press is one thing, we find similarly conveyed accla-
mation from the scientific community to be disquieting.
Even the ‘BD2K’ label the NIH attached to its data science ini-
tiative has this flavour.We feel compelled to caution: ‘Be care-
ful, there are impressionable students listening. Do you really
want to introduce them to the end of theory?’

The enthusiasm for the remarkable instrumental utility Big
Data is justified. Nonetheless, the logic of scientific discovery,
manifest within hypothesis and theory, lives, waiting, perhaps,
for another century when its demise is again predicted.
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