

Causal models with pharmacometric applications

Jonathan L. French, ScD

Metrum Research Group LLC

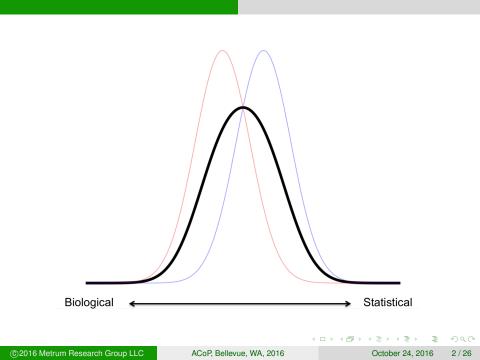
October 24, 2016

©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

October 24, 2016 1 / 26

4 A 1



Why do we build models?

- To describe data
 - "To describe the relationship between Drug X exposure and response rate"
- To make predictions
 - New dosing, new populations, etc.
- For causal inference
 - "If we were to increase exposure in this population of patients, how would we expect the response rate to change? "
 - Mechanistic models are helpful, but we still need to account for potentially confounding variables

4 B > 4 B

Causal inference in exposure-response has been a topic of interest lately ...

The Combination of Exposure-Response and Case-Control Analyses in Regulatory Decision Making The Journal of Clinical Pharmacology 53(2) 160–166 © The Author(s) 2012 DOI: 10.1177/0091270012445206

Jun Yang, PhD¹, Hong Zhao, PhD¹, Christine Garnett, PharmD¹, Atiqur Rahman, PhD³, Jogarao V. Gobburu, PhD¹, William Pierce, PharmD², Genevieve Schechter, MD², Jeffery Summers, MD², Patricia Keegan, MD², Brian Booth, PhD¹, and Yaning Wang, PhD¹

2012

Exposure–Response Relationship of T-DM1: Insight Into Dose Optimization for Patients With HER2-Positive Metastatic Breast Cancer

J Wang¹, P Song¹, S Schrieber¹, Q Liu¹, Q Xu², G Blumenthal³, L Amiri Kordestani³, P Cortazar³, A Ibrahim³, R Justice³, Y Wang¹, S Tang², B Booth¹, N Mehrotra¹ and A Rahman¹

2015

CCR Perspectives in Drug Approval

Clinical Cancer Research

FDA Approval Summary: Ramucirumab for Gastric Cancer

Sandra J. Casak¹, Ibilola Fashoyin-Aje¹, Steven J. Lemery¹, Lillian Zhang², Runyan Jin², Hongshan Li², Liang Zhao², Hong Zhao², Hui Zhang³, Huanyu Chan⁴, Kun He⁴, Michele Dougherty³, Rachel Novak⁴, Sarah Kennett⁴, Sachia Khasar¹, Whitney Helms¹, Patricia Keegan¹, and Richard Pazdur²

2015

イロト イポト イヨト イヨト

©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

October 24, 2016 4 / 26

But causal inference isn't a new topic

Pitfalls in Retrospective Analysis in Search of Concentration-Effect Relationships

Carl Peck, Tom Ludden Leiden University, The Netherlands, and CDER, FDA, USA

Intention-to-treat analysis and the goals of clinical trials

Lewis B. Sheiner, MD, and Donald B. Rubin, PhD^a San Francisco, Calif. and Cambridge, Mass.

1995

1994

Diagnostics for confounding in PK/PD models for oxcarbazepine

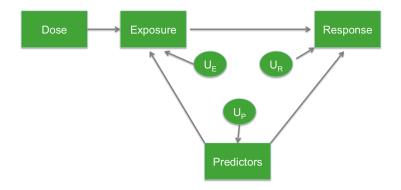
Jerry R. Nedelman^{1,*,†}, Donald B. Rubin² and Lewis B. Sheiner^{3,}[№] 2007

©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

October 24, 2016 5 / 26

In all of those examples, exposure is an outcome



When there are predictors of both exposure and response, need to consider employing tools from the analysis of observational data.

©2016 Metrum Research Group LLC

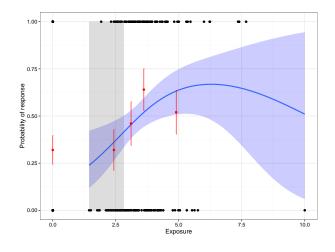
ACoP, Bellevue, WA, 2016

October 24, 2016 6 / 26

Motivating (fake-data) example

- You are on a drug development team developing a large molecule (MRG-001) for the treatment of oblivio.
- Your team has run one randomized, Phase 2 study comparing a single dose of MRG-001 to placebo.
- The outcome of interest is binary (responder/non-responder)
- There are several covariates (*X*) that are known to be prognostic for exposure which may also be predictive of the outcome (*Y*)

There is a fairly clear relationship between exposure and response

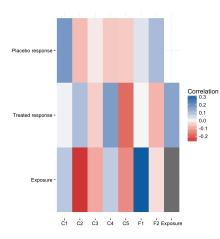


©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

October 24, 2016 8 / 26

There are some predictors related to both exposure and response



Variable	Placebo	Q1	Q2	Q3	Q4
N	100	50	50	50	50
response	0.32	0.32	0.46	0.64	0.52
exposure	0	2.43	3.11	3.61	4.9
CÍ	39.6	34.9	31.3	37.8	37.4
C2	70.8	77	69.4	64.9	61.3
C3	957	1440	1160	1010	994
C4	36.1	33.3	35.7	37.2	36.3
C5	19.4	26.8	26	16.9	20.3
F1	0.57	0.26	0.46	0.56	0.78
F2	0.42	0.6	0.5	0.52	0.5

★ ∃ > < ∃ >

Questions of interest

- What is your estimate of the effect of exposure for this *population* as a whole?
- What is your estimate of the effect of exposure in *patients with low exposure*?

These questions relate to estimating the causal effect of exposure on response.

Techniques such as case-matching (case-control) analyses aren't ideally suited to answer these questions.

A general roadmap for causal questions

- Specify knowledge about the system to be studied using a causal model
- Specify the observed data and their link to the causal model
- Specify the target causal quantity
- Assess identifiability
- State the statistical estimation problem
- Estimate
- Interpret

Peterson and van der Laan, Epidemiology, 25(3) 418-426, 2014

A general roadmap for causal questions

- Specify knowledge about the system to be studied using a causal model
- Specify the observed data and their link to the causal model
- Specify the target causal quantity
- Assess identifiability
- State the statistical estimation problem
- Estimate
- Interpret

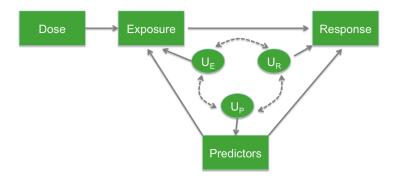
Peterson and van der Laan, Epidemiology, 25(3) 418-426, 2014

A general roadmap for causal questions

- Specify knowledge about the system to be studied using a causal model
- Specify the observed data and their link to the causal model
- Specify the target causal quantity
- Assess identifiability
- State the statistical estimation problem
- 6 Estimate
- Interpret

Peterson and van der Laan, Epidemiology, 25(3) 418-426, 2014

Specifying knowledge about the system



- Encoding what we know (and don't know) in a causal graph can be an important first step.
- Correlations between error terms (U_E, U_R, U_P) may be induced by unmeasured variables.
 - Assessing the potential impact of unmeasured confounders (Nedelman et al., 2007)

ACoP, Bellevue, WA, 2016

イロト イヨト イラト イラト

Potential outcomes and the assignment mechanism

- Let Y_i(e) be the potential outcome for patient i at exposure
 (E) = e
 - $Y_i(e)$ is the outcome we would observe if a patient *i* had E = e
 - We typically only observe $Y_i(e)$ for one (or a few) values of e
 - Counterfactual potential outcomes are the values of Y_i(e) that we don't observe
- The assignment mechanism is the (stochastic) process that assigns exposure
 - For a concentration-controlled trial, this is completely random
 - For a dose-controlled trial, it may depend on observed (and/or unobserved) covariates

Causal effects are differences in potential outcomes

- We will define individual causal effects in terms of differences in potential outcomes
 - Causal effect at $E = e : Y_i(e) Y_i(0)$
 - But, we've only observed Y(e) for one value of e
- So, we will calculate the population causal effect
 - The expected difference between the mean response at E = e and E = 0
 - Expectation is taken with respect to the distribution of X
- Conditioning on X this is
 E_Y(*Y*|*X* = *x*, *E* = *e*) *E_Y*(*Y*|*X* = *x*, *E* = 0)
- If we average over the distribution of X, this is $E_X [E_Y(Y|X = x, E = e) E_Y(Y|X = x, E = 0)]$

イロト 不得 トイヨト イヨト 二日

Calculating the population (average) causal effect

$$ACE = E_X [E_Y(Y|X = x, E = e) - E_Y(Y|X = x, E = 0)]$$

= $\sum_X \{E_Y(Y|X = x, E = e) - E_Y(Y|X = x, E = 0)\} p(X = x)$

The probability distribution for X comes from the population of focus.

- Enrolled population
- Low exposure patients

We estimate population causal effect as

$$\widehat{ACE} = \frac{1}{n_{pop}} \sum_{i \in P} \widehat{E}_Y(Y|X = x_i, E = e) - \widehat{E}_Y(Y|X = x_i, E = 0)$$

イモトイモト

Causal effects should be model-independent

$$ACE = E_X [E_Y(Y|X = x, E = e) - E_Y(Y|X = x, E = 0)]$$

The definition of causal effects does not depend on any particular model.

It could be calculated using

- parametric or non-parametric regression model
- machine learning
- model averaging

How does this relate to the motivating example?

Given the graphical model and causal effect of interest, we're ready to make inference.

 $ACE = E_X [E_Y(Y|X = x, E = e) - E_Y(Y|X = x, E = 0)]$

©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

October 24, 2016 19 / 26

モレイモ

Estimated exposure-response model

• Suppose we've arrived at the following model:

$$egin{aligned} Y_i &\sim \mathsf{Bernoulli}(p_i)\ X_i &= (C1_i, C2_i, C3_i, C4_i, C5_i, F1_i, F2_i)\ \mathsf{ogit}(p_i) &= \mathsf{BSL}_i + rac{\mathsf{Emax}_i \ E_i^{ heta_8}}{\mathsf{E50}^{ heta_8} + E_i^{ heta_8}} \end{aligned}$$

$$BSL_{i} = \theta_{0} + \theta_{1}C1_{i} + \theta_{2}C2_{i} + \theta_{3}C3_{i} + \theta_{4}F1_{i}$$

Emax_i = $\theta_{5} + \theta_{6}C1_{i} + \theta_{7}C2_{i}$

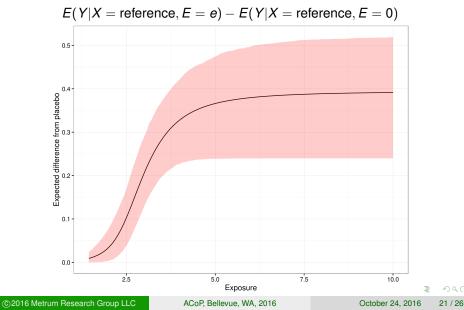
©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

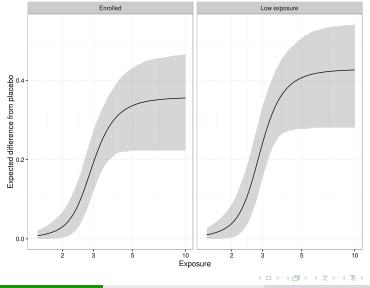
October 24, 2016 20 / 26

∃ ► < ∃ ►</p>

Model-predicted difference from placebo



Average casual effect in different populations



©2016 Metrum Research Group LLC

ACoP, Bellevue, WA, 2016

October 24, 2016 22 / 26

A few odds and ends

- There are many important details (and assumptions) of causal inference that I've skipped over!
- I have presented one simple example of using the formal framework of causal analysis in pharmacometrics
 - A randomized dose ranging design could have helped dramatically
 - Other models could have been used instead of logistic regression
 - "Estimation procedures should be tailored to provide high-quality answers to questions of scientific interest" Gruber & van der Laan
- As M&S scientists move toward using observational databases (e.g., EHR), causal tools will be increasingly more important.

Summary

- Exposure is an outcome
- Think about causal effects in terms of *potential outcomes*.
- In order to make clear causal inference, we should define a *target* causal quantity (and population) of interest.

モトィモ

Acknowledgements

Jayson Wilbur Jim Rogers Dan Polhamus Yoni Sidi Marc Gastonguay

Ben Arnold David Benkeser

References

- Casak et al. FDA Approval Summary: Ramucirumab for Gastric Cancer. Clin Cancer Res. 2015; 21(15): 3372-6.
- Gruber S and van der Laan MJ. Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures. Stat Meth Med Res. 2015; 24(6): 1003-8.
- Nedelman JR, Rubin DB, and Sheiner LB. Diagnostics for confounding in PK/PD models for oxcarbazepine. Stat Med. 2007; 26:290-308.
- Peck C and Ludden T. Pitfalls in Retrospective Analysis in Search of Concentration-Effect Relationships. PAGE 3 (1994) Abstr 867 [www.page-meeting.org/?abstract=867]
- Petersen ML and van der Laan MJ. Causal Models and Learning from Data: Integrating Causal Modeling and Statistical Estimation. *Epidemiology.* 2014; 25(3): 418-425.
- Sheiner LB and Rubin DB. Intention-to-treat analysis and goals of clinical trials. Clin Pharm Ther. 1995; 57: 6-15.
- Wang J et al. Exposure-Response Relationship of T-DM1: Insight into Dose Optimization for Patients with HER2-Positive Metastatic Breast Cancer. Clin Pharmacol Ther. 2015; 95(5)
- Yang JY et al. The Combination of Exposure-Response and Case-Control Analyses in Regulatory Decision Making. J Clin Pharmacol. 2012; 53(2): 160-6.