An Evaluation of Calcilytic Effects on Parathyroid Hormone and Bone Mineral Density Response Using a Physiologically-Based, Multiscale Systems Pharmacology Model

Kyle T. Baron,¹ Matthew M. Riggs,¹ Ryoko Sawamura,² Takako Shimizu,² Fumihiko Okada,² Jin Zhou,³ Takahiro Shibayama,³ Mendel Jansen⁴

¹Metrum Research Group LLC; Tariffville, CT USA; ²Daiichi Sankyo Co., Ltd., Japan; ³Daiichi Sankyo Pharma Development, Edison, NJ USA; ⁴Daiichi Sankyo Development Ltd., United Kingdom

ABSTRACT

Recent research involving Ca sensing receptor (CaSR) antagonists (calcilytics) has focused on assimilating transient spikes in PTH observed with subcutaneous PTH (1-34, 1-84) administration. The goal has been to provide a "by mouth" osteoporosis treatment comparable to PTH without invasive dosing. Investigations have yet to achieve this target profile, with typical BMD elevations of no more than 2%-3% and often notably elevated serum calcium. A model-based approach to quantify the physiologic response to calcilytics was undertaken to support development of DS-9194b, an orally administered investigational calcilytic. An existing physiologically-based, multiscale systems pharmacology mathematical model (MSPM)^[1] was expanded to include a capacity-limited PTH release pool. Pharmacokinetic (PK) and PTH data (ronacaleret [R], JTT-305 [J]) were used for this further MSPM model development. Results indicated a limit to the maximum achievable peak PTH response and described the characteristic persistent PTH elevation.

The MSPM results were coupled with a modeled relationship between peak PTH and BMD (fig 8); results suggested that mean PTHmax (~ 20 pM) from the investigated calcilytics equated to a mean BMD increase < 3%, as typically observed for these agents, whereas a PTHmax > 30 pM was considered necessary to provide appreciable BMD increase.

PK, PTH and Ca data were prospectively collected from a single-dose, first-in-human study including DS-9194b administration [0-100 mg]. PTHmax reached an apparent plateau (~ 30 pM) as doses increased above 15 mg (fig 6); this peak was well described by the MSPM, as were the prolonged elevations at higher doses. Urine Ca excretion decreased with increased DS-9194b dose (fig 7); this effect was included in the MSPM through PTH effects on urine Ca excretion. A maximal 12-month 4%–5% BMD increase was predicted for DS-9194b based on the prior modeling. Only the single-dose clinical data was required to support this prediction and suggests potential for DS-9194b as a future osteoporosis treatment option.

Overall, the modeling indicated that BMD elevation with calcilytic administration routines evaluated is possible but the magnitude of BMD elevation is unlikely to match that seen with exogenous PTH. The MSPM provided a physiologic explanation of maximal PTH response due to capacity-limited PT gland pool of PTH. Results can guide future considerations for calcilytic-related therapies for osteoporosis or other PTH-related disorders.

OBJECTIVES

Model-Based Decision Support

- Use model-based approach to quantify the physiologic response to calcilytics to support development of DS-9194b, an orally administered investigational calcilytic
- Develop target criteria for PTH response (extent and duration) for first-in-human clinical study of an investigational drug (DSI-9194b)
- Assess maximal PTH response and effects of urine Ca^{2+} excretion using DS-9194b first-in-human clinical data; support development criteria with expectations for maximal BMD changes achievable through CaSR antagonism

BACKGROUND – MULTISCALE SYSTEMS PHARMACOLOGY MODELS (MSPMs)

Multiscale Systems Biology / Pharmacology Models (Figure 1)

- Biologic systems expressed as mathematical expressions
- Quantify timecourses, magnitudes of changes (e.g., natural decays, interactions)
- Serve as in silico probes of biologic perturbation (e.g., disease, genetic variation)
- Multiscale systems pharmacology model (**MSPM**): include pharmacologic effects

Figure 1: Defining multiscale systems models and terminology; reproduced from Riggs 2011^[2]

Figure 2: MSPM conceptual framework and content overview.

MSPM of Bone Mineral Homeostasis and Remodeling (Figures 2, 4)

- Mathematical (differential equations) construct from experimental and clinical data
- Scales: Cell signaling \rightarrow organ functions \rightarrow bone turnover markers (BTMs) \rightarrow BMD • Applications:
- Denosumab: PTH, serum calcium, BTMs,^[1] and lumbar spine BMD^[3, 4]
- Teriparatide: PTH, serum calcium, and BTMs^[1]
- Disease/Aging [CKD-MBD,^[5] menopause and endometriosis^[6]]: BTMs, BMD and fracture risk^[7]
- Software: R (www.R-project.org/)^[8] (Vienna, Austria)

BACKGROUND – CALCILYTICS **Calcilytics:**

- Earlier calcilytic clinical trials: BMD elevations no more than 2%–3% and often notably elevated serum calcium^[9, 10, 11, 12, 13]
- Where these effects due to compound specific (e.g., pharmacokinetic (PK)) effects or class-specific? \Rightarrow model related effects:
 - Drug concentration vs. time profiles (PK)

drug concentration.

- Inhibit (pharmacologic antagonism) calcium-sensing receptor (CaSR) in PT gland
 - PTH release and kinetics associated with drug PK (exposure-response)
 - Include Ca²⁺ homeostatic effects in serum, kidney, gut, and bone using MSPM
 - Include osteoclast and osteoblast activity (BTMs) and BMD effects using MSPM

METHODS – PUBLIC DATA SOURCES

Pharmacokinetic (PK) and PTH data were used for this further MSPM model development: • **Ronacaleret:** Fitzpatrick et al. ASMBR 2008, JCEM 2011^[9] • **JTT-305:** Fukumoto et al. ASBMR 2009,^[11] ECTS/IBMS 2011^[10] • **PTH1-34:** NDA 21-318 Briefing Doc V1^[17]

- **PTH1-84:** EPAR Scientific Discussion 2007^[18]

METHODS – DS-9194b CLINICAL DATA

- first-in-human study including DS-9194b administration [0–100 mg]
- fasting conditions
- 10, 12, and 16 hours postdose
- hours postdose

METHODS – MODELING

- fit using nlme, mrgSim, and deSolve packages in R
- BMD-PTHmax relationship was modeled using nls function in R
- Serum PTH and urine Ca²⁺ obversations were modeled simultaneously
- Urine Ca²⁺ modeled as cumulative amount of Ca²⁺ in urine as function of time

METHODS – MODEL EXPANSION OF PT GLAND POOL

 $R_0 = PREPTH_{ss} \cdot k_s + PTH_{ss} \cdot k_{deg}$

 $REABS_{active} = \frac{Reabs_{max} \cdot CA}{Reabs_{50} + CA} \cdot PTH_{effect} \cdot RCA$ $\frac{\mathrm{d}}{\mathrm{dt}}RCA_{1} = ktr \cdot \left[1 + \frac{SMAX \cdot DRUG}{EC_{50,rca} + DRUG}\right] - ktr \cdot RCA_{1} \qquad ktr = \frac{n+1}{MTT} \qquad n = 8$

 $\frac{d}{dt}RCA_{m} = ktr \cdot [RCA_{(m-1)} - RCA_{m}] \qquad m = 2, 3, 4, 5, 6, 7, 8$

Figure 5: System of transit compartments allowing for delay in development of DS-9194b effect on renal Ca^{2+} reabsorption. In the final model, n=8.

• PK, PTH and urine Ca²⁺ data were prospectively collected from a single ascending dose,

• Twenty-one healthy male subjects aged 18–45 randomized to receive single DS-9194b doses of 5 (N=3), 15 (N=6), 50 (N=5), and 100 mg (N=3) or placebo (N=5) under

• DS-9194b PK & PTH sampled predose and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8,

• Urine collections 2 hour window immediately before first dose and 0–8, 8–12, and 12–24

• Nonlinear mixed effects models for repeated serum PTH and urine Ca²⁺ measures, wer

RESULTS – MSPM PREDICTION OF PTH RESPONSE

Quantitative, physiologically-based explanation of observed PTH response to CaSR antagonism:

Figure 7: Observed (circles) and median MSPM-predicted (red line) serum PTH after single oral DS-9194b Figure 6: Observed (circles) and median MSPM-predicted (red line) serum PTH after single oral DS-9194b dose. Parameter estimates [estimate (95% condfidence interval)]: MTT: 21.9 hour (10.7–45.0), EC_{50.rca}: dose. Parameter estimates [estimate (95% confidence interval)]: Baseline PTH: 34.7 pg/ml (31.2–38.5) 0.501 mg/L (0.116–2.17), SMAX: 0.1 (fixed). Residual error, urine Ca²⁺ [standard deviation normalized to k_{deg} : 6.60/hr (5.12–8.52), $k_{release}$: 6.87/hr (6.21–7.61), k_s : 0.922/hr (0.814–1.04), EC_{50.DRUG}: 0.5131 residual error for PTH $\sigma_{\rm UCA}/\sigma_{\rm PTH}$]: 2.03 (1.67–2.46). mg/L (0.400–0.658), γ_2 : 1.98 (1.76–2.23). Subject-level variability [as standard deviation]: $\omega_{\text{BaselinePTH}}$: $0.224 \ (0.164-0.307), \ \omega_{\rm kdeg}$: 0.368 (0.235-0.577), $\omega_{\rm EC50,DRUG}$: 0.418 (0.289-0.603). Residual error, PTH [standard deviation σ_{PTH}]: 11.1 pg/ml (10.4–11.9).

Figure 8: Observed (symbols) and predicted (line) lumbar spine BMD relative to maximum PTH response (PTHmax). PTHmax was simulated for each agent based on pharmacokinetic (PK) and PK-PTH relationships. Notably, the BMD-PTHmax relationship held whether transient PTH elevation was affected through exogenously administered PTH (teriparatide or PTH1-84) or by CaSR antagonism. E0: placebo-corrected lumbar spine BMD when maximum day 1 PTH is zero; PTH50: maximum PTH concentration corresponding to 50% of maximum placebo-corrected lumbar spine BMD increase; Gam: sigmoidicity factor for Emax

IMPLICATIONS

- MSPM can describe and explain: (1) PTH max "ceiling effect" (fig 6), effect" (fig 6), and (3) urinary Ca excretion effects (fig 7)
- PTHmax predicted LS BMD changes (fig 8)
- MSPM with drug kinetics and dynamic effect on PTH can predict expe from CaSR antag candidates
- A maximal 12-month $\sim 4 5\%$ BMD increase was predicted for DS-9 prior modeling
- Only the single-dose clinical data was required to support this predi potential for DS-9194b as a future osteoporosis treatment option

CONCLUSIONS

- Modeling indicated that BMD elevation with calcilytic administration r possible but magnitude of BMD elevation unlikely to match that seen v
- The MSPM provided a physiologic explanation of maximal PTH capacity-limited PT gland pool of PTH
- Results can guide future considerations for calcilytic-related therapies other PTH-related disorders

RESULTS – PTH EFFECT ON CALCIUM IN URINE (UCA)

MSPM also provides explanation of observed reduction in Ca²⁺ excretion due to hypothesized direct CaSR action in the kidney:

	REFERENCES
), (2) PTH "shoulder	
	[1] Peterson, M.C. and Riggs, M.M. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46 (2010).49-63
	[2] Riggs, M.M. Multiscale systems models as a knowledge bridge between biology, physiology, and pharmacology. AAPS Newsmagazine (2011).
	[3] Peterson, M.C. and M, R.M. Predicting Nonlinear Changes in Bone Mineral Density Over Time Using a Multiscale Systems Pharmacology Model. <i>CPT</i> :
	pharmacomet. syst. pharmacol. 1 (2012/11/14/online).
	[4] Riggs, M.M., Baron, K.T., Plan, E.L. and Gastonguay, M.R. Qualification of a Physiologically-Based Model for Predicted Bone Marker and Bone Mineral Department (ACDMD) Annual Martine Abstract
acted RMD response	Density Changes Associated with Denosumad Treatment. In Presented at American Society of Bone Mineral Research (ASBMR) Annual Meeting, Abstract SU0363 (Minneapolis, MN, 2012)
Celea Divid response	[5] Riggs, M.M., Peterson, M.C. and Gastonguay, M.R. Multiscale physiology-based modeling of mineral bone disorder in patients with impaired kidney
	function. J Clin Pharmacol 52 (2012):45S–53S.
	[6] Riggs, M., Bennetts, M., van der Graaf, P. and Martin, S. Integrated pharmacometrics and systems pharmacology model-based analyses to guide GnRH
-0104h based on the	receptor modulator development for management of endometriosis. CP1 Pharmacometrics Syst. Pharmacol. 1 (2012). [7] Dian E.L. Baron, K.T. Castonguay, M.B. French, I.L. Gillesnie, W.B. and Biggs, M.M. Bayesian Joint Modeling of Bone Mineral Density And Repeated
/1/ 10 Dased off the	Time-To-Fracture Event For Multiscale Bone Systems Model Extension. In PAGE 21st Meeting (2012).
	[8] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008).
	ISBN: 3-900051-07-0. URL http://www.B-project.org
diction and suggests	[9] Fitzpatrick, L.A., Dabrowski, C.E., Cicconetti, G., Gordon, D.N., Fuerst, T., Engelke, K.A. and Genant, H.K. Ronacaleret, a calcium-sensing receptor
	antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res (2011).
	[10] Fukumoto, S., Nakamura, T., Nishizawa, Y. and Matsumoto, T. Randomized, double-blinded placebo-controlled study of a calcilytic compound, JTT-305,
	In patients with postmenopausal osteoporosis. Bone 48 (2011):576.
	JTT-305, in Patients with Postmenopausal Osteoporosis. In ASBMR 31st Annual Meeting (2009).
	[12] Fitzpatrick, L.A., Dabrowski, C.E., Cicconetti, G., Gordon, D.N., Papapoulos, S., Bone, 3rd, H.G. and Bilezikian, J.P. The effects of ronacaleret, a
	calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone
	mineral density. J Clin Endocrinol Metab 96 (2011):2441–9.
routines evaluated is	chronic administration of a calcium-sensing receptor antagonist, ronacaleret, on renal calcium excretion and serum calcium in postmenopausal women.
with evogenous DTH	Bone 56 (2013):154–62.
with Crogenous I III	[14] Abraham, A.K., Mager, D.E., Gao, X., Li, M., Healy, D.R. and Maurer, T.S. Mechanism-based pharmacokinetic/pharmacodynamic model of parathyroid
1	hormone-calcium homeostasis in rats and humans. J Pharmacol Exp Ther 330 (2009):169–78. [15] Shrestha B.P. Hollot, C.V. Chinkin, S.B. Schmitt, C.P. and Chait, V. A mathematical model of parathyroid hormone response to acute changes in plasma.
H response due to	ionized calcium concentration in humans. Math Biosci 226 (2010):46–57.
	[16] Cabal, A., Mehta, K., Ross, D.S., Shrestha, R.P., Comisar, W., Denker, A., Pai, S.M. and Ishikawa, T. A semimechanistic model of the time-course of release
	of PTH into plasma following administration of the calcilytic JTT-305/MK-5442 in humans. J Bone Miner Res 28 (2013):1830–6.
	[1/] LIIIY Research Laboratories. LY333334 (Teriparatide Injection) Briefing Document (2001). URL http://www.fda.gov/ohrms/dockets/ac/01/briefing/2761b2_01_lilly.pdf
es for osteoporosis or	[18] European Medicines Agency. Preotact: EPAR Scientific Discussion. EMEA.
	URL http://www.ema.europa.eu/docs/en_GB/document_library/EPARScientific_Discussion/human/000659/WC500041340.pdf