ACoP8 October 18, 2017

Neighbor's Envy Owner's Pride – Comparator Analysis for Drug Development and Market Access

Post-Approval Decision Making Supported by Modeling and Simulation Based on a Variety of Data Sources

Marc R. Gastonguay, Ph.D. FISoP

Statement of Problem and Context

- Variety of Data Sources
- Post-Approval Decision Making
 - > Indirect Comparative Effectiveness
 - > Probability of Success in Real World Evidence Trial
- Utility of M&S Given Different Data Sources
 - Limitations
 - > Opportunities

A Variety of Data Sources

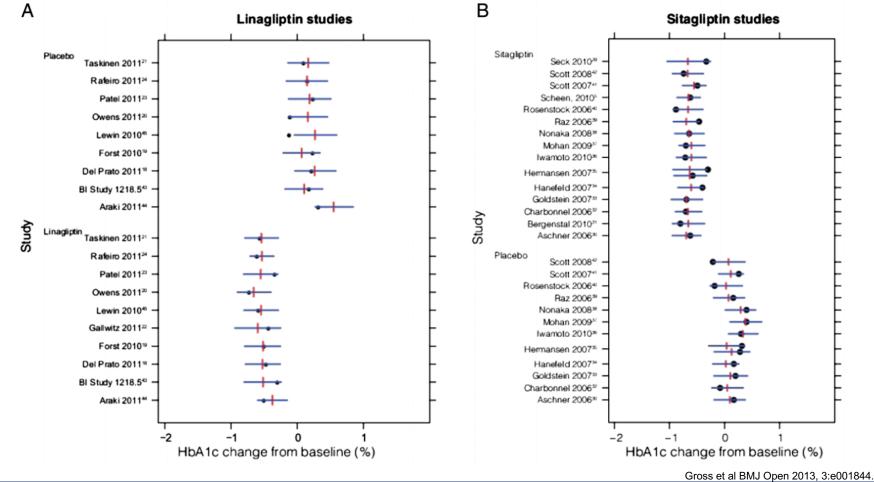
>Individual-Level Clinical Trial Data

>Individual-Level Patient Registry Data

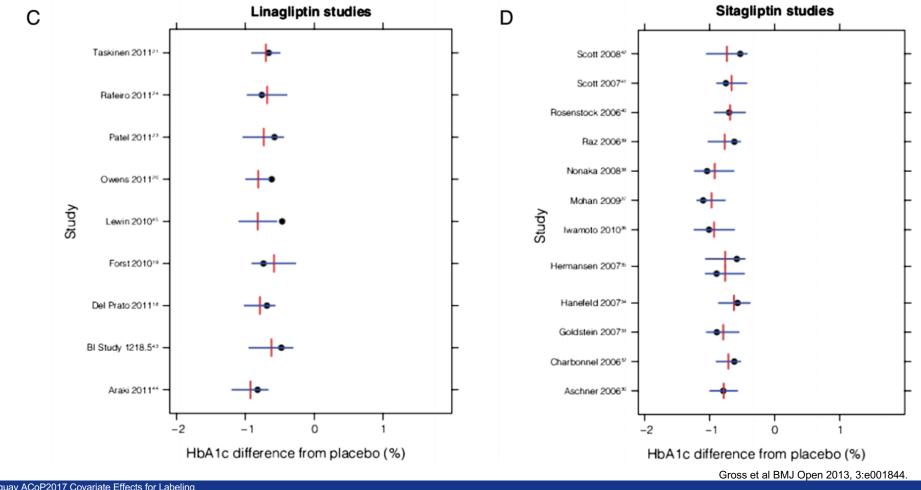
>Individual-Level Electronic Medical Records

Summary-Level Literature Meta-Data

Open Access


BMJ Open accessible medical research

A novel model-based meta-analysis to indirectly estimate the comparative efficacy of two medications: an example using DPP-4 inhibitors, sitagliptin and linagliptin, in treatment of type 2 diabetes mellitus


Jorge Luiz Gross,¹ James Rogers,² Daniel Polhamus,² William Gillespie,² Christian Friedrich,³ Yan Gong,⁴ Brigitta Ursula Monz,⁴ Sanjay Patel,⁵ Alexander Staab,³ Silke Retlich³

Gross JL, Rogers J, Polhamus D, Gillespie W, Friedrich F, Gong Y, Monz BU, Patel S, Staab A, Retlich S. A novel model-based meta-analysis to indirectly estimate the comparative efficacy of two medications: an example using DPP-4 inhibitors, sitagliptin and linagliptin, in treatment of type 2 diabetes mellitus. BMJ Open 2013, 3:e001844.

Trial Summary Data: HbA1c Change from Baseline

Trial Summary Data: HbA1c Difference from Placebo

Probability Distribution for Expected Response

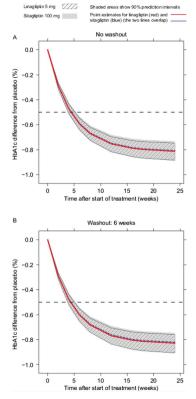
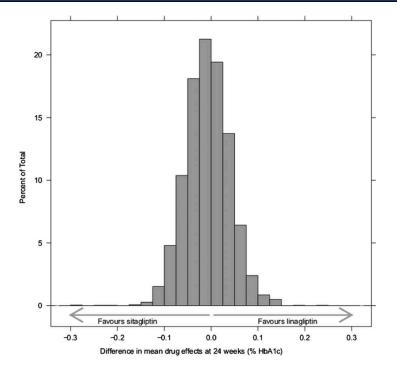
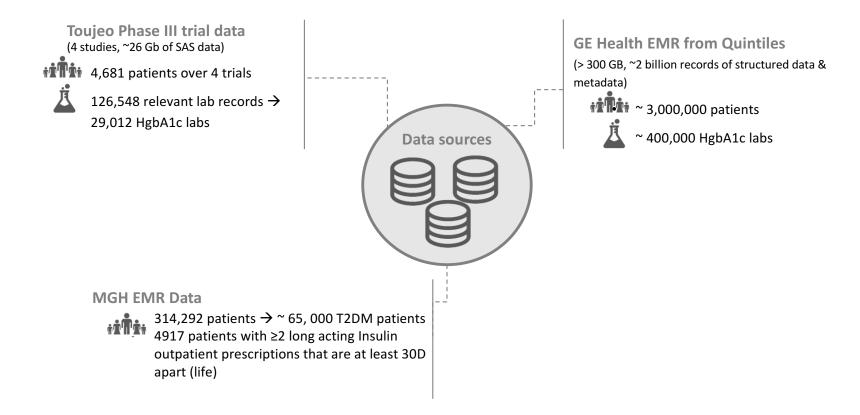




Figure 4 (A) Estimated drug effects on glycated haemoglobin (HbA1c) for reference population, with no pretreatment washout, over 24 weeks (difference from placebo). (B) Estimated drug effects on HbA1c for reference population, with 4-week washout plus 2-week placebo run-in period, over 24 weeks (difference from placebo). Reference population of 1000 participants, baseline HbA1c: 8%, racial composition: 61.5% White, 1.5% Black, 37% Asia.

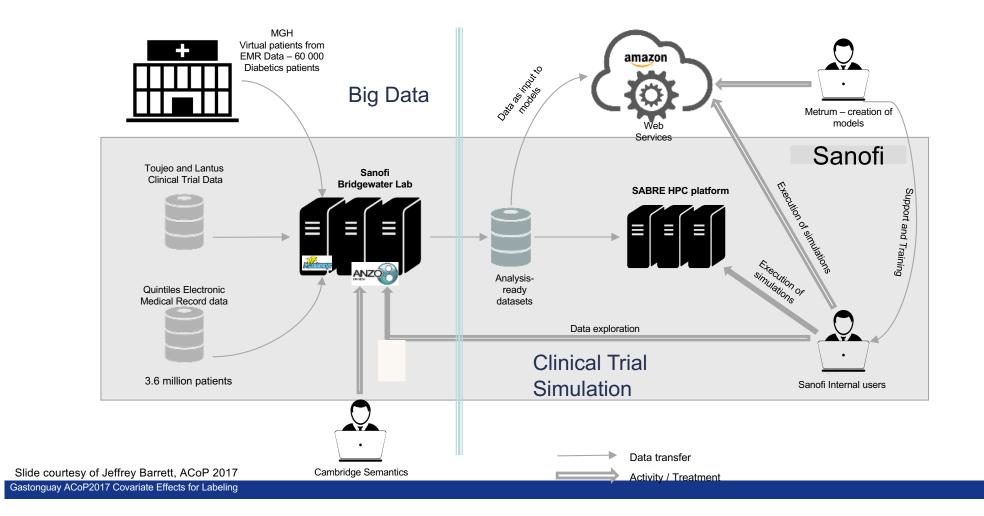
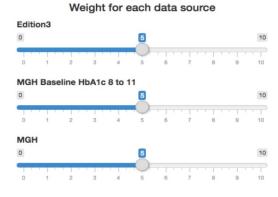
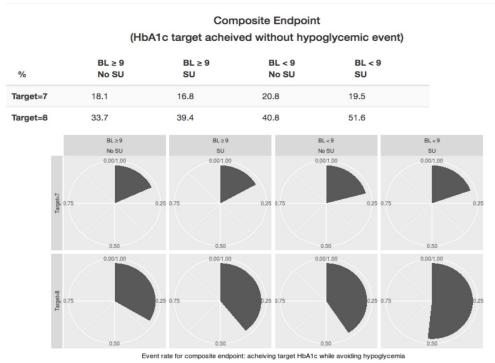


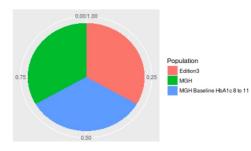
Figure 5 Posterior distribution for the difference in effect estimates between linaglitpin (5 mg) and sitagliptin (100 mg) at 24 weeks. Reference population of 1000 participants (therefore involving 10⁶ simulated patients), baseline glycated haemoglobin (HbA1c): 8%, racial composition: 61.5% White, 1.5% Black, 37% Asian.

Toujeo Real World Evidence Trial Simulation: Data Sources




The Big Picture = Systems and Data

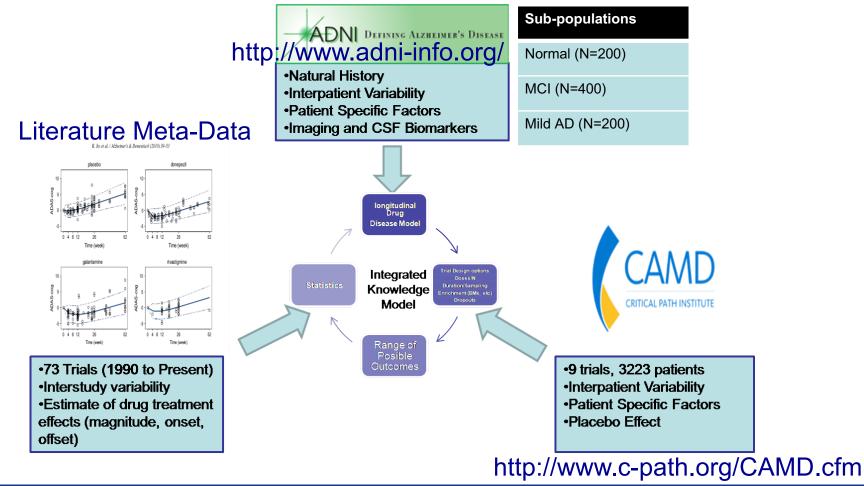
• • •	► Dashboard	× 💽 RStudio	o - git-SAN0101F ×	RWE Simulator	×					James 🔺	
← → 0	$\leftarrow \rightarrow \mathbb{C} \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$										
Apps	🛨 Bookmarks 📄 News	metrum office	📄 general ref 📄	comp ref 📄 stats	googlecode	🚞 tmp 🗎 R	i metrum public	rogerskatee@gmail.c	Imported	Other Bookmarks	
	RWE Simulator	Data Sources	Demographics	Lantus / SOC	Toujeo Sim	ulation Summary	- Advanced				


Specification of SOC Event Rates

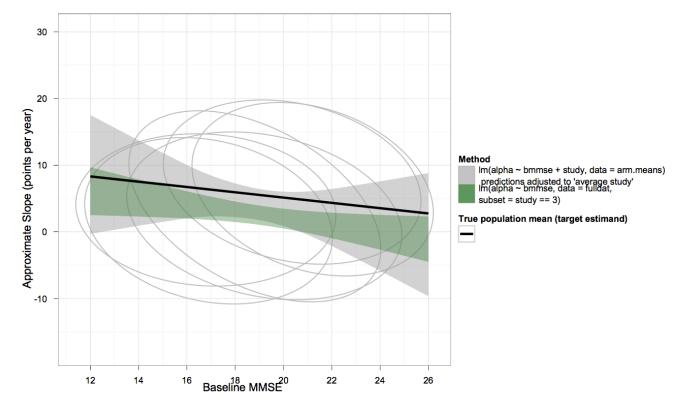
Lantus/SOC Event Rate

Summary of relative weights

Slide courtesy of Jeffrey Barrett, ACoP 2017


Pros/cons of aggregate data (AD) MA

• Pros


- Relatively easy access to data from public sources
- Cons
 - Not well-suited for inferences about patient-level covariates.
 - Ecological bias/fallacy
 - Aggregate covariate data describes a narrower range of values than individual covariate data
 - For nonlinear models the relationship between the dependent variable and the covariates, e.g., dose or time, is not described by the same function for AD and IPD.
 - Usually no info about correlations among multiple outcomes
 - Model usually not suitable for prediction/simulation of individual outcomes

Slide courtesy of Bill Gillespie, ACoP 2016

Alzheimer's Disease Progression Model

Tradeoffs Between Summary-level Analysis and Patient-level Analysis

Slide courtesy of Jim Rogers, ACoP 2011

J Pharmacokinet Pharmacodyn DOI 10.1007/s10928-012-9263-3

ORIGINAL PAPER

Combining patient-level and summary-level data for Alzheimer's disease modeling and simulation: a beta regression meta-analysis

James A. Rogers · Daniel Polhamus · William R. Gillespie · Kaori Ito · Klaus Romero · Ruolun Qiu · Diane Stephenson · Marc R. Gastonguay · Brian Corrigan

Objective:

Develop a model to describe the longitudinal progression of ADAS-cog in Alzheimer's disease patients in both natural history and randomized clinical trial settings, utilizing both IPD and AD. Hierarchical expectation propagation for Bayesian aggregation of average data*

Sebastian Weber[†] Andrew Gelman[‡] Bob Carpenter [‡] Daniel Lee[‡] Michael Betancourt[§] Aki Vehtari[¶] Amy Racine[†] 26 Oct 2015

https://arxiv.org/abs/1602.02055

- Details methodology for joint analysis of IPD and AD from one study each [17, 18].
- Readily generalized to multiple IPD and AD studies.
- The AD data likelihood is imputed by simulation.
- That is embedded within an overall Bayesian analysis method involving:
 - Analysis of IPD by HMC (Stan),
 - Analysis of AD data by importance sampling, and
 - Iterative updating of both IPD and AD analyses by expectation propagation.

Slide courtesy of Bill Gillesie, ACoP 2016

Why Use Meta-Data at All?

Comprehensive view of current state of knowledge

>May be only source of estimates for competitor drug effects

Inferences may be limited to simple treatment mean or SD comparisons

Combine with individual-level data from other sources

Another Strategy

Build Models Sequentially by Data Source

>Model-Based Meta Analysis for Comparator Mean Effect

-Bayesian Data Analysis

- Informative Prior Distributions for Comparator Mean Effects based on MBMA
- Individual-Level Data for Disease Progression and Population Variability
- >Individual-Level Data for Proprietary Asset

-Perform Simulation from Bayesian Posterior Distributions

Utility of Different Data Types

	Data Type							
Model-Based Inference or Application	A. Individual- Level Clinical Trial Data	B. Individual- Level Patient Registry Data	C. Individual- Level Electronic Medical Records	D. Summary- Level Clinical Trial Meta Data (e.g. Mean & SD)				
Treatment Mean Comparison	Х		in combination with A or D	х				
Treatment SD Comparison	X			х				
Individual Covariate Effect Estimation	х							
Covariate Distributions	Х	X	X					
Sample Size Calculation	Х	in combination with A or D	X	Х				
Trial Simulation with Individual Inferences or multiple endpoints	Х	in combination with A	in combination with A	in combination with A				