

Exposure-response modeling in oncology: technical challenges and proposed solutions

Jonathan L French, ScD Marc Gastonguay, PhD

Metrum Research Group LLC

13 October 2014 ACoP5, Las Vegas

Why is exposure-response analysis hard in oncology?

- Studies not designed to understand exposure-response
 - Phase 2/3 studies often limited to one dose/regimen of the experimental treatment
 - Sparse PK sampling
 - Endpoint collection (e.g., timing of scans)
- Substantially more patient heterogeneity than in other disease areas
- Multi-treatment regimens used more frequently than in other disease areas
- Key endpoints may occur after the end of treatment

There are many challenges ...

- Confounding of exposure-response relationship
- Challenges in selecting appropriate exposure measure
- Exposure-response for events after the end of treatment
- ..

What is confounding?

An apparent exposure-response relationship...

Suppose we want to ...

- Estimate E-R relationship
- Estimate the hazard ratio for Q1 relative to control
- Predict the effects of a higher dose in patients with lower exposure

...in an unbiased (causal) manner.

What if there are covariates associated with the outcome and exposure?

Group	Q1	Q2-4	Control
N	75	223	310
% Poorly differentiated	37	12	15
Extent of local spread	95	83	87
% > 4 lymph nodes	64	13	29

Defining the problem

- We no longer have a fully randomized experiment there is imbalance in prognostic factors across the range of exposures.
- Not accounting for this imbalance will lead to biased estimates of E-R relationship
- Primarily an issue when studying E-R based on only one dose

How might we solve the confounding issue?

- Design
 - Multiple doses/regimens in Phase 2/3
- Analysis
 - Adjust for the covariate effects in a regression model
 - Perform a matched analysis (case-matching) e.g., Yang et al.
 [2012]
 - Generalizations of propensity score methods

Case-matching

- Find patients in the control group that have a similar covariate distribution as the patients in the treated (low exposure) group.
- In a sense, we are trying to create a pseudo-randomized comparison.
 - Goal: obtain samples that are comparable with respect to covariate distributions (not 1:1 matches)
- The resulting difference in outcome using the matched data should then be due to treatment and not covariate effects.
- Good for description but not prediction

Implementing the matching

- Defining 'similar'
 - Which variables should you match on?
 - Those (likely to be) associated with the outcome.
 - What is a good metric for similarity?
 - Mahalanobis distance, propensity score, combination
- What if not all treated patients can be matched to a control patient?

Challenges in selecting an appropriate exposure measures

- Studies not typically designed for E-R analysis
 - Inadequate collection of dosing info
 - PK sampling design and early discontinuation
 - PK sampling design not sufficient to capture true concentration at specific event times, or fluctuation in exposure due to dose adjustments
- Apparent design mis-match between TTE endpoints and continuous PK
 - Typically a single TTE outcome per individual
 - Event observation time is not determined by study design; results in a distribution of event times across individuals
 - PK data are continuous repeated-measures, with sampling times usually driven by study design
- Dose reductions/holidays in response to tolerability

Use summary measure of exposure?

- Observed summary measure [AUC(interval), Cmax, or Cmin]
 - No model needed
 - Does not capture all dose reductions/holidays
 - Potentially biased sample of patients
- Model-predicted summary measure [AUC(interval), Cmax, Cmin]
 - Utilizes entire dosing history
 - Requires accurate dosing history and PK model at the individual level
 - Differential shrinkage?
- All of these measures will be correlated unless design specifically includes different regimens
- When to capture exposure measure relative to event?

Could use continuous PK as driver of event

continuous with respect to exposure and time

The underlying pharmacologic/toxicologic mechanisms are

- Link continuous PK to event through time-varying hazard function
 - Could be direct link or indirect (e.g. indirect PD response, latent variable)
 - Increased complexity in model building and model checking, due to integration of time-varying hazard
 - Requires accurate dosing history and PK model at the individual level
- May be closer to "true" system, but trade-off of assumptions and complexity when compared to other approaches

Practical considerations

- Generally prefer model-based exposure measures over observed
- Must consider PK sampling at the design stage for use in E-R analysis
- Selection of exposure measure is dependent upon clinical setting, dosing patterns, event type, and specific data analysis questions
- Studies are not typically designed to compare different exposure measures...
 - Be careful when making conclusions about which exposure measure is the "true" driver, based on GOF-based criteria alone.
- Requires model checking to assess performance of exposure-response model for intended purpose

Conclusions

- Improved study design is the most effective solution to these challenges and something we can influence
 - More than one dose/regimen
 - Thoughtful PK sampling design
 - Multiple scans before and after treatment
- Addressing these challenges through analysis methods is less effective but something we can control
 - Matched analyses
 - Regression models
- Other things are important but generally out of our influence (e.g., tumor genetic heterogeneity)

Back-up Slides

Exposure-response for events after the end of treatment

From Putter et al. [2007]

Extension of work illness-death model to exposure-response setting.

See, for example, Putter et al. [2006] and Broglio and Berry [2009]

References

- Kristine R. Broglio and Donald A. Berry. Detecting an overall survial benefit that is derived from progression-free survival. *J Natl Cancer Inst*, 101:1642–1649, 2009.
- H. Putter, M. Fiocco, and R.B. Geskus. Tutorial in biostatistics: Competing risks and multi-state models. *Stat Med*, 26:2389–2430, 2007.
- Hein Putter, Jos van der Hage, Geertruida H. de Bock, Rachid Elgalta, and Cornelis J.H. van de Velde. Estimation and prediction in a multi-state model for breast cancer. *Biom J*, 48(3): 366–380, 2006.
- J. Yang, H. Zhao, C. Garnett, A. Rahman, J.V. Gobburu, W. Pierce, G. Schechter, J. Summers, P. Keegan, B. Booth, and Y. Wang. The combination of exposure-response and case-control analyses in regulatory decision making. *J Clin Pharmacol.*, 53(2):160–166, 2012.