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A challenge of pharmacological interventions for the treat-
ment of cancer is to provide the most effective drug at the 
most efficient dosing regimen to increase the probability of 
successful outcomes. If objective (and early) prognostic mea-
sures of the pharmacodynamic activity for a given anticancer 
drug can be established, identification of the patients most 
likely to respond to treatment, in addition to patients with a 
higher risk of experiencing adverse effects, can be envisioned.

Tyrosine kinase inhibitors comprise a group of anticancer 
drugs where effectiveness may be improved through use of a 
biomarker-guided dose individualization approach. Currently, 
these drugs are typically dosed as a fixed regimen (dose 
amount and frequency) across all patients despite the high 
between-patient variability in pharmacokinetics (PK). Such 
regimens increase the potential for suboptimal exposures 
being achieved in particular patients.1

Sunitinib malate (SUTENT, Pfizer) is an oral, small-
molecule, multitargeted tyrosine kinase inhibitor currently 
approved in, e.g., the United States and Europe for the treat-
ment of metastatic renal cell carcinoma, imatinib-resistant 
gastrointestinal stromal tumor (GIST), and pancreatic neu-
roendocrine tumor. 

In a companion article, we present an overarching model-
ing framework that links drug exposure, soluble biomarkers, 
tumor growth dynamics, and overall survival (OS) with the 
aim of identifying robust predictors of clinical response.2 A 
soluble form of the vascular endothelial growth factor (VEGF) 
receptor, soluble vascular endothelial growth factor receptor 
(sVEGFR)-3, was identified as the most effective predictor 
of OS in sunitinib-treated GIST patients. sVEGFR-3 was 
found to be a more effective predictor of OS than the relative 
change in tumor size at week 7, which was previously pro-
posed for other cytotoxic treatments.3 An additional question 

to address was whether sVEGFR-3 or any of the other previ-
ously investigated candidate biomarkers (VEGF, sVEGFR-2, 
or sKIT) were predictive of adverse effects, which could 
assist in determining an individualized dose. Additionally, 
the adverse effects themselves may be “useful” alternative 
early indicators of pharmacodynamic activity as they could 
be more practical to use in the clinical setting. Hypertension 
is a commonly observed adverse effect for VEGF(R) inhibi-
tors4 and has been reported as a biomarker of treatment 
efficacy in metastatic renal cell carcinoma patients treated 
with sunitinib.5,6 A positive correlation has also been identi-
fied between the severity of neutropenia and both time to 
progression and OS7 in sunitinib-treated GIST.

Relationships between drug exposure, candidate biomark-
ers (VEGF, sVEGFR-2, sVEGFR-3, and sKIT), and the suni-
tinib-related adverse effects—fatigue, hand–foot syndrome 
(HFS), neutropenia, and hypertension—were assessed in 
sunitinib-treated GIST using nonlinear mixed-effects phar-
macokinetic–pharmacodynamic modeling. Adverse events 
were also evaluated as potential predictors of OS.

RESULTS

The analysis included data pooled from four clinical trials8–11 
in phases I–III, which comprised 303 patients with imatinib-
resistant malignant GIST treated with sunitinib and/or pla-
cebo (Table 1). Available data were biomarker candidates 
(VEGF, sVEGFR-2, sVEGFR-3, and sKIT), OS, and the 
most commonly reported treatment-related adverse effects, 
fatigue, HFS, neutropenia, and hypertension (diastolic blood 
pressure, dBP).

Longitudinal information on dose, sunitinib daily area 
under the concentration–time curve (AUC), and biomarkers 

A modeling framework relating exposure, biomarkers (vascular endothelial growth factor (VEGF), soluble vascular endothelial growth 
factor receptor (sVEGFR)-2, -3, soluble stem cell factor receptor (sKIT)), and tumor growth to overall survival (OS) was extended to 
include adverse effects (myelosuppression, hypertension, fatigue, and hand–foot syndrome (HFS)). Longitudinal pharmacokinetic–
pharmacodynamic models of sunitinib were developed based on data from 303 patients with gastrointestinal stromal tumor. 
Myelosuppression was characterized by a semiphysiological model and hypertension with an indirect response model. Proportional 
odds models with a first-order Markov model described the incidence and severity of fatigue and HFS. Relative change in sVEGFR-3 
was the most effective predictor of the occurrence and severity of myelosuppression, fatigue, and HFS. Hypertension was correlated 
best with sunitinib exposure. Baseline tumor size, time courses of neutropenia, and relative increase of diastolic blood pressure were 
identified as predictors of OS. The framework has potential to be used for early monitoring of adverse effects and clinical response, 
thereby facilitating dose individualization to maximize OS.
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were evaluated as predictors for adverse effects. The time 
courses of the biomarker [BM(t)] concentrations were 
characterized by indirect response models, as described 
in the study by Hansson et al.2 The predicted value of the 
different biomarkers for adverse effects was assessed by 
investigating how descriptive measures of the individual 
model–predicted biomarker time courses were, alone or in 
addition to drug exposure. The model-predicted baselines 
(BM0), absolute and relative change from baseline (BMREL), 
or the complete biomarker time courses were evaluated as 
predictors.

Myelosuppression model
A semiphysiological myelosuppression model12 using Box–
Cox-transformed data adequately described the extent and 
time course of the change in absolute neutrophil count (ANC) 
following sunitinib treatment. A more pronounced reduction 
in ANC was observed during the first treatment cycle, with 
partial recovery to baseline levels during the subsequent off-
treatment period. A smaller decline in ANC was subsequently 
observed during the second treatment cycle and thereafter. 
Placebo-treated patients did not show any systematic altera-
tions in ANC levels.

All of the investigated biomarkers were statistically sig-
nificantly correlated with the changes in ANC levels when 
assessed at a fixed time point (landmark). However, the 
longitudinal model–predicted relative change in sVEGFR-3 
from baseline (sVEGFR-3REL) was the better descriptor of 
the myelosuppression time course (change in the objective 
function value, ∆OFV = 170.8, compared with AUC). No fur-
ther improvement in the description of the data was observed 
when any of the other biomarkers or sunitinib AUC was 
added to the univariate model.

An Emax function most appropriately characterized the 
biomarker–ANC relationship. A separate baseline param-
eter (ANC0) was estimated to account for lower ANC levels 
in Study 45, which was conducted in Japanese patients. 
The final model included interindividual variability in ANC0, 
mean transit time (MTT) through the nonsensitive compart-
ments, Emax and EC50 (Table 2), with a correlation between 
ANC0 and Emax of 90%. For a typical patient receiving a 
daily 50-mg sunitinib dose (4/2 schedule) and an ANC0 of 
4.94 (⋅109/l), the model predicted a 62% decrease in ANC 
corresponding to a nadir of 1.9 (⋅109/l).

The predictive performance of the final myelosuppres-
sion model, as illustrated by a prediction-corrected visual 

Table 1   Data summary of the analyzed studies

Study number Study 1004 Study 1047 Study 1045 Study 013

Reference Demetri et al.12 George et al.13 Shiaro et al.14 Maki et al.15

N 202 active 13 36 52

47 placebo

Study design Double-blind, randomized, 
placebo-controlled,  
phase III

Nonrandomized, evaluating  
continuous treatment  
regimen, phase II

Nonrandomized, dose- 
escalating study in  
Japanese patients, phase I/II

Nonrandomized, dose- 
escalating study,  
phase I/II

Dosing schedule (weeks  
on/weeks off) 

0, 50 mg q.d. 37.5 mg q.d. 25, 50, 75 mg q.d. 25, 50, 75 mg q.d.

6-week cycles (4/2) 4-week cycles, continuous  
treatment

6-week cycles (4/2) 3-week cycles (2/1)

4-week cycles (2/2)

6-week cycles (4/2)

Fatigue (%)a 0: 30 0: 54 0: 31 0: 11

1: 33 1: 23 1: 39 1: 48

2: 25 2 :23 2: 19 2: 33

3: 11 3: 0 3: 8.3 3: 5.7

4: 1 4: 0 4: 2.7 4: 1.9

Hand–foot syndrome (%)a 0: 83 0:100 0: 14 0: NA

1: 5.0 1: 0 1: 20 1: NA

2: 6.9 2: 0 2: 34 2: NA

3: 5.4 3: 0 3: 31 3: NA

4: 0 4: 0 4: 0 4: NA

Absolute neutrophil counts 
(.109/l)b, median (range)

3.1 (0.080–20) 1.8 (0.010–7.5) 2.1 (0.28–12) 2.6 (0.16–15)

Diastolic blood pressure 
(mmHg)b, median (range)

80 (20–120) 78 (40–120) 79 (40–120) 80 (50–130)

Survival (weeks), median 
(range)

61 (4–226) 31 (81–15) 37 (27–48) 39 (4–96)

NA, not available; q.d., once daily.
aHighest observed severity score within an individual (%). bObserved median (range) response during the treatment period.
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predictive check (VPC; Figure 1), shows a good description 
of the ANC data.

Blood pressure model
An indirect response model with stimulation of the production 
rate (Kin), as proposed by Keizer et al. for another antiangio-
genic drug,13 described the observed elevated dBP during 
sunitinib treatment periods and the return to near baseline 
during off-treatment periods (Eq. 1). No increase in dBP 
could be identified for placebo patients. However, this group 
had a significantly higher baseline dBP (dBP0) when esti-
mated separately.

(1)

Sunitinib AUC was linked to the production rate (Kin) by a 
linear slope factor (dBPDrug effect). None of the evaluated bio-
markers were found to be significantly related to the dBP time 
course. Interindividual variability was estimated for dBP0, the 
mean residence time MRT (=1/kout), and dBPDrug effect, and a 
combined additive and proportional residual error model was 
used. A correlation between dBP0 and dBPDrug effect (65%) was 
estimated. The final model predicted a drug-induced increase 
in dBP by 10 mmHg for the typical patient with a baseline 
dBP of 71.8 mmHg treated with 50 mg sunitinib receiving a 
4/2 schedule.

The relative standard errors (RSEs, %) for the estimated 
parameters were low to intermediate, showing an adequate 
precision in the estimates (Table 2). The prediction-corrected 
VPC shows a good predictive performance of the final blood 
pressure model (Figure 2).

Fatigue and HFS models
The data were treated as ordered categorical (grades 0, 1, 
2, ≥ 3), and an extension of the proportional odds model was 
used to describe the probability and severity of fatigue and 
HFS over time.14,15 The extension included a first-order Mar-
kov model to condition the probability of transition between 
different severities based on the preceding one, thereby 
accounting for that the severity of the adverse effects is not 
independent from one time point to another. Logit transfor-
mations were used to constrain the estimated probabilities 
to values between 0 and 1, and the function describing the 
probability of transition from grade a to grade b for the ith 
patient at the jth observation was given the structure shown 
in Eq. 2.

(2)

where fb|a is a function of baseline transition probabilities 
(Bb|a), and g(xi) is a linear function on the logit scale relating 
explanatory factors, such as time, drug exposure (dose and 
AUC), and absolute/relative changes in biomarker concentra-
tions over time, to the probability of developing fatigue and 
HFS. The interindividual random effect for patient i (ηi) was 
assumed to be normally distributed with a mean of zero and 
a variance of ω2.

All of the biomarkers were significantly related to the 
probability and severity of fatigue and HFS. However, the 
relative change over time for sVEGFR-3 (sVEGFR-3REL) 
showed the most profound relationship (∆OFV = −103 for 
fatigue, ∆OFV = −159 for HFS, compared with AUC), and 
no further improvement in the description of the data was 
observed when AUC or the other biomarkers were also 
incorporated. No significant trend over time was identified. 
Increasing sVEGFR-3REL, i.e., a more pronounced reduc-
tion in sVEGFR-3, was associated with increased probability 
and severity of fatigue and HFS. Incorporation of an effect 
compartment into the model [ke0 = 0.424/hour (fatigue) and 
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Table 2   Final model parameter estimates (relative SE, %)

Parameter Estimate RSE, % IIV CV, % RSE, %

Myelosuppression model

  ANC0 (⋅109/l) 4.94 2.8 42 5.6

  ANC0 : Study 45 (⋅109/l) 3.69 6.9 42 5.6

  MTT (hours) 248 3.6 17 19

  ANC Emax 0.520 9.1 13 36

  ANC EC50 (pg·hour/l) 0.552 17 46 16

  γ 0.362 7.4 — —

  Residual errora 0.406 4.3 — —

Blood pressure model

  dBP0 (mmHg) 71.8 1.0 12 6.7

  dBP0 placebo (mmHg) 77.6 1.6 12 6.7

  MRT (= 1/kout) (hours) 361 17 83 12

  dBPslope (l/mg·hour) 0.119 9.4 65 11

  Residual error (mmHg) 6.24 16 — —

  Residual error (%) 6.97 24 — —

Survival model

  λ (/week) 0.0079 55 — —

  α 1.15 9.1 — —

  αcens 1.27 44 — —

  β1 ANC (l/.109) 4.76 31 — —

  β2 dBPREL −1.29 27 — —

  β3 Tumor base (/mm) −0.00172 46 — —

  λcens (/week) 0.0019 6.6 — —

ANC0, baseline absolute neutrophil count; CV, coefficient of variation; dBP0, 
baseline diastolic blood pressure (dBP); dBPslope, parameter relating drug 
exposure to the change in dBP; IIV, interindividual variability; MRT, mean resi-
dence time; MTT, mean transit time; RSE, relative standard error; α, shape 
factor in Weibull probability density function; αcens, shape factor in Weibull 
probability density function for censoring; β1 ANC, parameter relating ANC(t) to 
the hazard; β2 dBPREL, parameter relating the relative change in dBP to hazard; 
β3 Tumor base, parameter relating observed baseline tumor size to the hazard; γ, 
feedback factor; λ, scale factor in the Weibull probability density function; λcens, 
scale factor in the Weibull probability density function for censoring.
aResidual error on Box–Cox-transformed scale.
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0.347/hour (HFS)] significantly improved both the fatigue 
and HFS models (Table 3).

The parameters were estimated with acceptable precision 
and are reported on the logit scale in Table 3. The simula-
tion-based model evaluation described well the time course 
for the probability and severity of fatigue and HFS (Table 3, 
Figure 3). Furthermore, the simulated numbers of transitions 
between different severity grades were consistent with the 
observed values (results not shown).

OS model
A Weibull model described the underlying baseline haz-
ard for the observed survival data (λ; hazard coefficient, α; 

shape factor; Eq. 3, Table 2). The time course of neutropenia 
[ANC(t)] was the most significant predictor of OS (∆OFV = 
−42.6). Additionally, dBPREL(t) was significantly related to OS 
(∆OFV = −25.4), whereas fatigue and HFS were not related. 
A more pronounced decrease in ANC over time and/or a 
larger relative increase in dBP decreased the hazard risk of 
death.

To be able to compare our model with the previously 
reported survival model from that in our companion article,2 
which included sVEGFR-3REL and tumor size at start of treat-
ment as predictors, these two predictors were also included 
and reevaluated for significance, in addition to the presence 
of the adverse events. The model including ANC and dBP 

Figure 1   Prediction-corrected visual predictive checks of the final semimechanistic myelosuppression model for sunitinib-treated (left) 
and placebo-treated (right) patients using soluble vascular endothelial growth factor receptor (sVEGFR)-3REL as descriptor. Solid circles (•) 
represent observed absolute neutrophil counts, solid lines (—) represent the median of the observed data, and dashed lines (---) represent 
the 5th and 95th percentiles of the observed data. Shaded areas are the 95% confidence intervals based on the simulated data (n = 500) for 
the corresponding percentiles.
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Figure 2   Illustration of the predictive performance of the final blood pressure model for sunitinib-treated (left) and placebo-treated (right) 
patients by prediction-corrected visual predictive checks. Solid circles (•) represent observed diastolic blood pressure, solid lines (—) 
correspond to the median of the observed blood pressure data, and dashed lines(---) correspond to the 5th and 95th percentiles of the 
observed data. The shaded areas are the 95% confidence intervals based on the simulated data (n = 500) for the corresponding percentiles.
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resulted in a similar OFV as sVEGFR-3REL and could thereby 
be an alternative to the model developed earlier.2 A summary 
table of differences in OFV for the significant predictors is 
provided in Supplementary Table S1 online. The final model 
using adverse effects as predictors was parameterized as in 
Eq. 3.

(3)

The predictive properties of the survival model are ade-
quate as shown in the VPC (Figure 4). The Kaplan–Meier 
plot of the observed survival data is well within the 95% con-
fidence interval calculated from simulations of 200 data sets. 
The median number of simulated events (n = 151, range: 
126–176) was in accordance with the number of observed 
events (n = 163).

Evaluation of how well the model can predict survival using 
the model-predicted time course of ANC and dBP based on 
data from only the first treatment cycle (<6 weeks, and an 
average of five (ANC) and four (dBP) measurements), com-
pared with the use of all data, resulted in a similar model fit 
(∆OFV = 9.5). This indicated that a small number of ANCs 
and blood pressure measurements may be needed during the 
first treatment cycle to predict survival given the model. The 
predictive properties of the model when using data from only 

the first treatment course are illustrated by the Kaplan–Meier 
plot in Figure 4.

DISCUSSION

This study described the association between sunitinib expo-
sure, selected biomarkers, myelosuppression, hypertension, 
fatigue, and HFS through the development of longitudinal 
pharmacokinetic–pharmacodynamic models, and relation-
ships were added to the modeling framework described for 
sunitinib in GIST (Figure 5). Predictors of the toxicity dynam-
ics were assessed, and the soluble protein sVEGFR-3 was 
identified as being most predictive of neutropenia, fatigue, 
and HFS. The link between the longitudinal adverse effects 
data and OS indicated that dBP, myelosuppression, and 
baseline tumor size were most predictive. The relationship 
between AUC and adverse effects has previously partially 
been characterized in this population without considering 
the time aspect.16 In this study, the complete time course 
of the adverse effects were characterized to evaluate the 
relationships.17

A semimechanistic model12 was successfully applied to 
describe sunitinib-induced myelosuppression. sVEGFR-3 
was statistically the best predictor of the neutropenic time 
course. All of the investigated biomarkers were, however, 
significantly related to the time course of myelosuppression 
when evaluated one by one, reflecting the inhibitory effect 
of sunitinib on KIT (stem cell factor receptor) and the role 
of VEGF in myelopoiesis.4 These biomarkers may also have 
provided more longitudinal information on drug exposure 
because they were monitored for a longer period than drug 
concentrations. A longer MTT in the myelosuppression model 
(248 hours) was estimated for sunitinib than that typically 
reported for traditional intravenously administered cytotoxic 
drugs in short treatment schedules.23,31 Van Kesteren et al. 
reported on longer MTT for prolonged schedules, which may 
be the result of a decreased effect of the endogenous growth 
factors following longer periods of low number of circulating 
cells.18

The elevated dBP as a result of sunitinib treatment was 
described by an indirect response model with a linear rela-
tionship between AUC and the increased production rate 
(Kin). The mechanism mediating the elevated blood pressure 
in antiangiogenic treatment is not clear. One hypothesis is 
that decreased production of nitric oxide and vascular rar-
efaction due to VEGF blockade induces vasoconstriction and 
hypertension.4 The developed model has no direct mechanis-
tic link between exposure and appearance of hypertension, 
which limits extrapolation outside the range of dosing sched-
ules studied. A contrasting result to the other investigated 
adverse effects was that none of the evaluated biomarkers 
were significantly related to the model-predicted time course 
of dBP.

The developed first-order mixed-effects Markov models 
characterized the dynamics of longitudinal fatigue and HFS 
data. The model provides an alternative approach to tradi-
tional analysis of toxicity data, which often only reports the 
highest severity during the study for a patient and thereby 
discards the evolution of toxicity over time. An increased suni-
tinib exposure or sVEGFR-3 response was related to a higher 

h t t e ANC(t)C-5 dBP Tumor base2 REL t( ) ( ( ) / ( )= ⋅ ⋅ ⋅− ⋅ + ⋅ + ⋅λ α α β β β1 51 3 ))

Table 3  Time course for the probability and severity of HFS and fatigue

Parameter

HFS model Fatigue model

Estimate RSE, % Estimate RSE, %

B1|0 −10.4 11 −5.85 3.0

B2|0 −0.974 13 −1.14 7.8

B≥3|0 −1.59 19 −1.60 14

Slopex|0 −8.00 14 −1.93 22

ωx|0 3.07 67 1.06 20

B1|1 2.29 14 2.63 10

B2|1 −9.53 5.0 −10.7 3.1

B≥3|1 −1.33 24 −1.77 22

Slopex|1 −6.00 18 −4.62 17

ωx|1 0.902 54 1.25 30

B1|2 3.04 15 2.86 12

B2|2 −0.747 14 −0.427 20

B≥3|2 −9.09 5.1 −11.6 5.0

Slopex|2 −3.23 43 −4.64 22

ωx|2 0.270 118 1.30 24

B1|>3 3.4 21 3.06 23

B2|>3 −1.65 23 −0.090 115

B≥3|≥3 −0.453 37 −0.636 33

Slopex|≥3 −4.75 32 −3.32 51

ωx|≥3 NE NE 0.841 71

Bb|a, intercept for the probability of transition from grade a to grade b; HFS, 
hand–foot syndrome; NE, not estimated; RSE, relative standard error; 
Slopex|b, parameter relating soluble vascular endothelial growth factor recep-
tor (sVEGFR)-3 to the probability of the severity score x given the previous 
score b; ωx|0, interindividual random variability.
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risk and severity of adverse effects. The proposed models 
with sVEGFR-3 as a descriptor are empirical and provide lim-
ited contribution to the understanding of the mechanism for 
development of HFS and fatigue but could be of prognostic 
value.

The relative change in sVEGFR-3 over time is predictive 
of OS (ref 2) and the adverse event dynamics for myelosup-
pression, fatigue, and HFS. Therefore, monitoring sVEGFR-3 
has the potential to identify the patients at highest risk of tox-
icity and to enhance dose optimization. Efficient dose individ-
ualization could minimize the occurrence of severe adverse 
events and improve the treatment efficacy. A maintained 
dose intensity is of importance because higher exposures 
have been shown to be associated with longer OS and time 
to progression in a previously reported exposure–response 
analysis.16

The relative change in dBP, myelosuppression time 
course, and tumor size at start of treatment were predictive 

of OS. The model predicted that patients with a greater rel-
ative change in blood pressure and ANC, together with a 
smaller tumor size at baseline, displayed the longest OS. 
Cutoff values of blood pressure and neutropenia have pre-
viously been identified as predictors in sunitinib treatment 
using traditional statistical analysis. ANC < 1.5 × 109/l or dBP 
> 90 mmHg at any time during treatment were associated 
with longer OS.5–7

ANC and dBP measurements from the first treatment 
cycle can predict OS. The developed survival model may 
guide intrapatient dose escalation based on dBP and neu-
tropenia and explore the effectiveness of alternate dosing 
strategies. The potential impact on the augmented inci-
dence and severity of HFS and fatigue due to the increased 
dose adjustments can be considered. A future simulation 
study will evaluate a dose individualization approach to 
ultimately optimize the use of sunitinib in GIST. These fac-
tors will require confirmation in larger prospective trials. In 

Figure 4   Kaplan–Meier plot of the observed survival data (solid line) and the 95% confidence interval (shaded area) based on the simulated 
data (n = 200) for the final survival model (left). A Weibull model (λ = 0.0019, α = 1.3) was applied in the simulations to describe censoring. 
The right panel illustrates the predictive properties of the model when only using data from the first 6 weeks of treatment.
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conclusion, this analysis proposed the relative change in 
sVEGFR-3 over time as a predictor of the occurrence and 
severity of myelosuppression, fatigue, and HFS following 
sunitinib treatment. Furthermore, sunitinib-induced hyper-
tension and neutropenia were identified as predictors of 
OS in GIST. The developed framework, including adverse 
effects as biomarkers, has a potential to be used for early 
monitoring of response, thereby facilitating effective dose 
individualization.

METHODS

Patients and study design. The analyzed data were from four 
clinical trials8–11 in phases I–III, which comprised patients 
with imatinib-resistant malignant GIST treated with sunitinib. 
Only patients with biomarker and survival data reported were 
included in the analysis, totaling 303 patients. Sunitinib was 
administered in one of four different treatment schedules, 
including the 4/2, 2/2, and 2/1 (weeks on/weeks off) sched-
ule, and continuous treatment, with doses ranging from 0 
to 75 mg orally once daily (Table 1). Patients randomized to 
receive placebo treatment (n = 47) in the placebo-controlled 
trial (study 1004) were offered sunitinib on disease progres-
sion as defined by the Response Evaluation Criteria in Solid 
Tumors (RECIST).19 The studies were approved by local 
ethics committees and were performed in accordance with 
the Declaration of Helsinki. Written informed consent was 
obtained from all patients.

Data analysis. This population PK/PD analysis was performed 
sequentially using the nonlinear mixed-effects modeling  

approach. The first-order conditional estimation method with 
interaction (FOCEI) and the Laplacian estimation method 
implemented in the software NONMEM (version 7.2, gFor-
tran version 4.5.0, Gnu compiler collection; Supplementary 
Data) were used for parameter estimation. The R-based 
software Xpose (version 4)20 was used for model diagnos-
tics and graphical visualization of the results, and the PsN 
toolkit (version 3)21,22 was used for the postprocessing of 
results.

Model selection was based on assessment of graphical 
diagnostics and comparison of the OFV, provided by NON-
MEM, in the log-likelihood ratio test. The difference in OFV 
for two nested models is proportional to minus twice the log 
likelihood of the data and is approximately χ2 distributed. A 
significance level of P < 0.01 was used in this analysis, which 
corresponds to a decrease in OFV of at least 6.63 for the addi-
tion of one extra parameter. Evaluation of model robustness 
was based on relative standard errors (RSEs, %) of the model 
parameter estimates determined by nonparametric boot-
strapping (n = 200). Prediction-corrected VPCs23 were also 
assessed to judge the predictive performance of the devel-
oped models.

Pharmacokinetics. Dose or daily area under the concentra-
tion–time curve (AUC) calculated as Dose/(CL/F), with AUC 
= 0 during off-treatment periods, was used as the exposure 
measure for sunitinib (no data for the equipotent metabolite 
SU1266 were available). Total oral plasma clearance (CL/F) 
was described by the individual parameter estimates or pop-
ulation values [(when no PK data were available (n = 57)] 
obtained from a population PK model.24

Biomarker models. The time courses of the biomark-
ers were characterized by individual parameter estimates 
obtained from previously developed biomarker models.2 
The models described the changes in biomarker concen-
trations [BM(t)] through indirect response models assum-
ing a decreased production of the zero-order rate constant 
(Kin)  for sVEGFR-2, sVEGFR-3, and sKIT and an inhib-
ited degradation of VEGF (kout). A linear disease progres-
sion model characterized the increase of VEGF and sKIT 
over time. Data on sVEGFR-3 were not available for two 
of the studies (n = 69), but the high correlation between 
sVEGFR-2, sVEGFR-3, and VEGF to sVEGFR-3 enabled 
derivation of information on sVEGFR-3 in individuals with 
missing data.2

Myelosuppression model. The time course of sunitinib-
related changes in ANC was described by a semimechanis-
tic model for myelosuppression.12 The model is composed of 
a compartment representing drug-sensitive proliferating pro-
genitor cells in the bone marrow, a compartment of systemic 
circulating neutrophils, and a link between them through 
three transit compartments reflecting cell maturation. The 
model also includes a feedback function mimicking the effect 
of endogenous growth factors, e.g., granulocyte colony stim-
ulating factor (G-CSF), which increases the proliferation rate 
when neutrophil levels in the blood are low. The half-life of 
circulating neutrophils in blood was fixed to the literature 
value of 7 hours25 to enhance the physiological interpretation 
of the model. Estimated system-specific parameters were 

Figure 5   Relationships evaluated in the framework for sunitinib 
in gastrointestinal stromal tumor. Solid lines indicate relationships 
included in the final models, and dashed lines indicate relationships 
investigated but not included in the final models. In contrast to the 
other adverse effects investigated, blood pressure was, however, 
better predicted by sunitinib daily area under the concentration–
time curve (AUC) than soluble vascular endothelial growth factor 
receptor (sVEGFR)-3. Tumor size before treatment initiation 
(baseline) was a predictor in the final model of overall survival, 
whereas the relative change in sVEGFR-3 over time was a better 
predictor than other evaluated metrics of tumor size after start of 
treatment.2 The current analysis showed that absolute neutrophil 
count (ANC) and diastolic blood pressure (dBP) are, in combination, 
as good predictors of overall survival as is sVEGFR-3. HFS, hand–
foot syndrome; sKIT, soluble stem cell factor receptor.
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ANC0, MTT, and the feedback factor (γ). Furthermore, the 
drug effect—which is assumed to act by reducing the prolif-
eration rate and inducing cell loss—was estimated. Herein, 
linear, Emax, and sigmoid Emax models were evaluated to link 
drug exposure (dose and AUC) and biomarkers (baseline, 
absolute, and relative change) to cell death.

Modeling was performed on Box–Cox-transformed neu-
trophil data (ANCtransformed = (ANCλ − 1)/λ), with λ = 0.2, as 
this previously has been shown to result in approximately 
normally distributed residuals.26,27 Interindividual variability 
was assumed to be log-normally distributed with a mean 
of zero and a variance of ω2 and was evaluated for ANC0, 
MTT, and the drug effect parameters. Residual variabil-
ity was described by an additive (on Box–Cox scale) error 
model. The predictive performance of the myelosuppression 
model was evaluated by prediction-corrected VPCs (500 
simulations).23

Blood pressure model. The sunitinib-induced hypertension 
was reported in terms of increase in dBP. The actual times of 
the day for blood pressure measurements were not available 
and were therefore assumed to occur in the morning for all 
observations. The increase in dBP following sunitinib treat-
ment was described using (i) an indirect response model 
with stimulation of Kin or (ii) the alternative model with inhibi-
tion of kout. dBP0 and kout (reported as MRT = 1/kout) were esti-
mated, and Kin was derived as dBP0 × kout. Linear, Emax, and 
sigmoid Emax drug effect relationships to sunitinib exposure 
(dose and AUC) and biomarkers (baseline, absolute, and 
relative changes over time) were evaluated. Interindividual 
variability was assumed to be log-normally distributed with 
a mean of zero and a variance of ω2. Additive, proportional, 
or combined additive and proportional residual error models 
were evaluated.

The predictive properties of the final blood pressure 
model was evaluated using prediction-corrected VPCs  
(n = 500).23

Fatigue and HFS model. Fatigue and HFS were assessed 
daily throughout treatment. They were reported according to 
the National Cancer Institute common toxicity criteria (ver-
sion 3.0) as different grades, where grade 0 corresponds 
to no adverse event and grade 4 refers to a life-threatening 
event. However, grade 4 was only reported in a few patients 
(for fatigue: 1%; and for HFS: 0%), and these occurrences 
were consequently grouped with grade 3 into a single 
category.

Models for ordered categorical data (grades 0, 1, 2, and 
≥   3) with a first-order Markov model were applied. Transi-
tions between all the different severity grades were consid-
ered in the analysis, totaling 16 different possible transitions. 
The sum of the associated probabilities for each grade (Px|0, 
Px|1, Px|2, and Px|≥3) is one, and therefore three probabilities 
for each grade were directly estimated and the fourth prob-
ability (P0|0, P1|0, P2|0, and P3|0) was expressed as one minus 
the sum of the associated probabilities. Linear and nonlinear 
models for the explanatory factors were assessed, and the 
addition of an effect compartment to account for a delay in 
the drug effect was tested.28

The fatigue and HFS models were evaluated by categori-
cal VPCs, where 95% confidence intervals were generated 
from 500 simulations and overlaid with the observed time 
course of fatigue and HFS stratified by severity. In addition, 
predictive checks were created by comparing the simulated 
and observed numbers of transitions between different toxic-
ity grades.

OS model. A parametric survival (time-to-event) model was 
developed to evaluate whether any of the studied treatment-
related adverse effects were predictive of OS. The underly-
ing distribution of the observed survival data was evaluated 
by exponential, Weibull, log-logistic, extreme value, and 
Gompertz probability density functions. The individual pre-
dicted time courses, using AUC as predictor, for neutro-
penia and hypertension were extrapolated based on the 
developed models assuming dosing and schedule accord-
ing to protocol until time of censoring/death. For neutrope-
nia and hypertension baseline levels, absolute time course 
and absolute and relative change from baseline over time 
were evaluated as predictors of OS. For fatigue and HFS, 
the observed severity scores (last observation carried for-
ward) were evaluated as predictors of OS by including each 
observed score as a predictor. To be able to compare our 
model with the previously reported survival model, which 
included sVEGFR-3

REL and tumor size at start of treatment 
as predictors,2 these two predictors were also included and 
reevaluated for significance, in addition to the presence of 
the adverse events.

The predictive properties of the survival model were 
assessed by Kaplan–Meier plots of the observed sur-
vival  data compared with a 95% confidence interval gen-
erated from simulations of 200 replicates of the data sets. 
Censoring because of, e.g., a short follow-up period was 
described by a Weibull model, which was applied in the 
simulations.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?

33 Sunitinib-induced change in the angiogenic bio-
marker soluble vascular endothelial growth factor 
receptor (sVEGFR)-3 was a predictor of overall 
survival (OS) in a modeling framework evaluating 
exposure–biomarker–tumor size–OS relation-
ships for gastrointestinal stromal tumor (GIST).

WHAT QUESTION DID THIS STUDY ADDRESS?

33 In a population PKPD analysis, exposure 
and the changes in angiogenic biomarkers 
over time were investigated as predictors for 
sunitinib-induced adverse effects. The time 
courses of the adverse effects were tested for 
their predictive capacities for OS.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

33 The framework was expanded to integrate ad-
verse effects. The relative change in sVEGFR-3 
over time was a predictor of myelosuppression, 
fatigue, and hand–foot syndrome. The relative 
increase in diastolic blood pressure (dBPREL) 
was positively correlated with sunitinib AUC. 
Neutrophil count and dBPREL were identified to 
predict OS equally well as sVEGFR-3.

HOW THIS MIGHT CHANGE CLINICAL 
PHARMACOLOGY AND THERAPEUTICS

33 Models of four common adverse effects 
of sunitinib were added to the developed 
framework on integrated PKPD models. 
Neutrophil counts and blood pressure mea-
surements show promise to be applied in feed-
back individualization to increase OS in GIST.
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