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I Markov Models (MM) in Health Economics Analyses

QALY?: measure of benefit, dependent on
number of individuals and/or duration in

. ’ any state
ICER®: cost per QALY
Static Markov Models in HE Analyses:
Approach based on discrete-time and

proportion of individuals
Proportion of individuals in the population

move across the states according to a set of
transition probabilities only once per time
interval (sometimes lengthy “Markov cycle”)
Time-dependent covariates possible

? Quality-Adjusted Life Years, b Incremental Cost-Effectiveness Ratio



I Denosumab Pharmacoeconomic Analysis
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ORIGINAL RESEARCH W) Check for updates

A cost-effectiveness analysis of denosumab for the prevention of skeletal-related
events in patients with multiple myeloma in the United States of America

Noopur Raje?, Garson David Roodman®, Wolfgang Willenbacher®, Kazuyuki Shimizu®, Ramc_Sn Garcia-Sanz®,
Evangelos Terposf, Lisa Kennedy®, Lorenzo Sabatellih, Michele Intorcia™ and Guy Hechmati'




Y N\ N ‘ ~ Deterministic Sensitivity Analysis
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Figure 1. Depiction of model health states. 1L, first line; 2L+, second line or QALY decrement — SC (denosumab) B High value

later; Abbreviations. MM, multiple myeloma; OFF SRE Prev Tx, patients not Cost — admin. zoledronic acid Il Low value
receiving treatment to prevent SREs; ON SRE Prev Tx, patients receiving treat- I T T T T T 1

ment to prevent SREs; SRE, skeletal-related event; Tx, treatment.
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Static Markov Model Figure 4. One-way deterministic sensitivity analyses of key variables from (a) the societal perspective and (b) the payer perspective. Ranges for par:
were as follows: annual efficacy discount rate = 0.00-0.05; percentage of patients not eligible to receive zoledronic acid =0.05-0.15; annual crude
denosumab = 0.55-0.64; annual crude SRE rate of zoledronic acid = 0.58-0.67; real world adjustment SRE rate = 2.01-4.01; SRE rate ratio for zoledror
treatment = 0.42-0.82; zoledronic acid cost of administration = 189-231; denosumab number of cycles =0.79-0.97; zoledronic acid number of cycles
post-progression utility decrement=0.57-0.72; QALY decrement SC=0.0009-0.0014; QALY decrement IV =0.0017-0.0025; QALY decrement verte
=0.05-0.15; QALY decrement non-vertebral fracture =0.05-0.15; MM second-line treatment duration = 7.66-9.36; percentage of potential savings in ai
ment used in the cost-effectiveness analysis =0.40-0.60; second-line MM treatment monthly costs = 16,430-20,081; third-line MM treatment n
s=16,530-20,204. Abbreviations. 2L, second line; 3L, third line; CE, cost-effectiveness analysis; IV, intravenous; MM, multiple myeloma; RR, ri
subcutaneous injection; SRE, skeletal-related event; QALY, quality-adjusted life-year.




I Dynamic Markov Models: Infectious Disease

Haeussler et al. BMC Medical Research Methodology (2018) 18:82 .
https://doi.org/10.1186/512874-018-0541-7 @ B M C M ed ICa l Resea rCh

Methodology

https://doi.org/10.1186/s12874-018-0541-7

RESEARCH ARTICLE Open Access

A dynamic Bayesian Markov model for L
health economic evaluations of interventions
in infectious disease

Katrin Haeussler'2*, Ardo van den Hout' and Gianluca Baio'




I Infectious Disease Health States

Fig. 1 Model structure of a hypothetical chronic sexually transmitted infection. The arrows represent the possible transitions. These are governed by
the parameters ¢, s with indices r, s € S representing origin and target states, respectively. The replenishment of the pool of susceptibles by
newborns proceeds at a rate x




I Infectious Disease Health States: Static MM

Fig. 1 Model structure of a hypothetical chronic sexually transmitted infection. The arrows represent the possible transitions. These are governed by
the parameters ¢, s with indices r, s € S representing origin and target states, respectively. The replenishment of the pool of susceptibles by
newborns proceeds at a rate x

172 0 0 mgs
0 my ma3 0 mas
0 O m33 m34 735
0 0 O mya mys
O 0O 0 o0 1




I Infectious Disease Health States: Dynamic MM
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Fig. 1 Model structure of a hypothetical chronic sexually transmitted infection. The arrows represent the possible transitions. These are governed by
the parameters ¢, s with indices r, s € S representing origin and target states, respectively. The replenishment of the pool of susceptibles by
newborns proceeds at a rate x
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Asymptomatic high-risk females
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Fig. 2 Calibration results on the number of high-risk females in the states following a systematic probabilistic calibration approach. The results of the
Bayesian models are similar, with a slightly higher number of high-risk females in the states Infected and Asymptomatic estimated by the Bayesian
ODE-based model. In contrast, the deterministic ODE-based model results in a lower estimate on the number of high-risk females in the states

Infected and Asymptomatic; however, the outcome on the state Morbid is reversed




I Linking PMX and PE: Xanthine Oxidase Inh. & Gout

Individual-Level PKPD Modeling and Simulation
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Economic model (x 5,000 simulations)

Integration of Pharmacometrics and Pharmacoeconomics to Quantify the Value of Improved Forgiveness to Nonadherence: A Case Study of Novel Xanthine Oxidase Inhibitors for Gout.
Daniel Hill-McManus;Scott Marshall;Elena Soto;Dyfrig A Hughes ISSN: 0009-9236 , 1532-6535; DOI: 10.1002/cpt.1454. Clinical pharmacology & therapeutics : CPT. , 2019, Vol.106(3),
p.652-660




I Simulation: Response vs. Adherence

Mean treatment response rate (< 6 mg/dL)
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Integration of Pharmacometrics and Pharmacoeconomics to Quantify the Value of Improved Forgiveness to Nonadherence: A Case Study of Novel Xanthine Oxidase Inhibitors for Gout.
Daniel Hill-McManus;Scott Marshall;Elena Soto;Dyfrig A Hughes ISSN: 0009-9236 , 1532-6535; DOI: 10.1002/cpt.1454. Clinical pharmacology & therapeutics : CPT. , 2019, Vol.106(3),
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I Simulation: Pricing vs Response

Estimation of possible hypothetical XOi pricing premiums relative to febuxostat 80 mg
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Multi-Scale Systems Pharmacology Models
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Fracture Rate MSSP/Model-Based Meta Analysis
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RJ Eudy-Byrne, W Gillespie, MM Riggs, MR Gastonguay. A model of fracture risk used to examine the link between bone mineral density and the
impact of different therapeutic mechanisms on fracture outcomes in patients with osteoporosis J Pharmacokinet Pharmacodyn (2017)
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I Fracture Hazard Ratio by Treatment

bisphosphonates PTH_teriparatide RANKL _inhibitor_denosumab SERM

i i i i

1 1 1 1

1 5- 1 1 1

15- : : : I
1 1 1 1

1 1 1 | 1

1 1 6- 1 | 1

1 1 1 | 1

1 1 1 | 1

1 4" 1 1 1

1 1 1 1

: : : 2- ;

1 1 1 1

1 1 1 1

10- ! 1 ' |
1 1 1 1

: = : 4- : :

1 1 1 1

1 1 1 1

1 1 1 \ 1

1 1 1 1

1 1 1 \ 1

: 2- : : i

1 1 1 1- 1

5- : : : :
1 1 2- 1 |

1 1 1 1

1 1 1 1

: 1- : : [

1 1 1 | 1

1 1 1 | 1

1 1 1 1

1 1 1 1

1 1 1 | 1

1 1 1 A 1

0- ; - : 0- : 0- e

' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' | ' '
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Fig. 3 Hazard ratios for each treatment relative to placebo calculated and density plots for this calculation over the posterior distribution of
parameter estimates are represented, for the model with both drug-BMD interaction and additional drug effect

RJ Eudy-Byrne, W Gillespie, MM Riggs, MR Gastonguay. A model of fracture risk used to examine the link between bone mineral density and the impact of 16
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Linking MSSP/Fracture Model & Pharmacoeconomics
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Figure 1. Depiction of model health states. 1L, first line; 2L+, second line or
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IOpen Source Models in Health Economics

PharmacoEconomics (2017) 35:125-128 @ CrossMark
DOI 10.1007/s40273-016-0479-8

RESEARCH LETTER

Benefits, Challenges and Potential Strategies of Open Source
Health Economic Models

William C. N. Dunlop’ - Nicola Mason? - James Kenworthy' + Ron L. Akehurst?
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Probability of Success: Outdated Thinking

vs. placebo
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Probability of Success: Evolving Thinking

vs. active control
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Probability of Success: New Opportunity
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I Summary

e Markov Models in Health Economics
e Ulility of static vs dynamic Markov Models
e Value of open science in HE Analyses

e Opportunities at the intersection of Pharmacometrics
and Health Economics
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