
Torsten: Stan functions for pharmacometric applications
Improvements and new R interface workflow
Yi Zhang and William R. Gillespie Metrum Research Group, Tariffville, CT USA

Objectives

Stan is a widely used, open-source, probabilistic programming language and Bayesian inference engine [1, 2]. It
provides a general model specification language and uses HMC simulation for fully Bayesian data analysis. Torsten
is a library of Stan functions that simplifies implementation of pharmacometric (PMX) models and extends the
range of models that may be implemented [3]. The objective of this presentation is to summarize and demonstrate
recent developments of Torsten.

Methods
Implemented in C++, Torsten is licensed under BSD-3 and collected into the Stan Math submodule. Torsten is a
superset of Stan with PMX functionality add–ons (supported on all major OS platforms). To use Torsten’s parallel
capabilities, one must have message-passing interface (MPI) installed, e.g., OpenMPI or MPICH.

Results

Torsten supports the following pharmacokinetics (PK) & pharmacodynamics (PD) models (newly added in italic):

One- & two-compartment model with or without first–order absorption
One-compartment PK coupled with effect-compartment model
Two-compartment PK coupled with effect-compartment model
Linear ordinary differential equation (ODE) model (matrix exponential solution)
General ODE model (numerical integration solution)
Coupled model based on analytical PK solution and numerical PD solution
ODE-based population models that permit within-chain parallel computation

Improved events handling

Torsten supports NMTRAN compatible event specification arguments (TIME, AMT, RATE, II, EVID, CMT, ADDL,
SS), with all the real[] arguments allowed to be parameters. Also, ODE model parameters theta, bioavail-
ability fraction F, and lag time tlag can be event/time dependent. As the most recent improvement F and tlag
are optional:

// F = 1.0, tlag = 0, defaut ODE integrator controls
x = pmx_solve_rk45(time, amt, rate, ii, evid, cmt, addl, ss, theta);

// F = 1.0, tlag = 0, user-defined ODE integrator controls
x = pmx_solve_rk45(time, amt, rate, ii, evid, cmt, addl, ss, theta, rel_tol, abs_tol, max_num_steps);

// tlag = 0, user-defined F & ODE integrator controls
x = pmx_solve_rk45(time, amt, rate, ii, evid, cmt, addl, ss, theta, F, rel_tol, abs_tol, max_num_steps);

// user-defined F, tlag & ODE integrator controls
x = pmx_solve_rk45(time, amt, rate, ii, evid, cmt, addl, ss, theta, F, tlag, rel_tol, abs_tol, max_num_steps);

New ODE integration function

The Cash-Karp integrator function has been contributed to upstream Stan (ode_ckrk). Benchmarks indicate
superior performance when it is applied to problems with near-discontinuities or rapid oscillations (Fig. 1).

Experimental feature of parallel warmup

Based on Torsten’s MPI framework we have implemented an experimental cross-chain warmup algorithm that
performs dynamic warmup adaptation by chain aggregation [4]: the joint log posterior sampled from parallel chains
are collected to calculate bR and effective sample sizes (ESS) [5]. The warmup is terminated when bR and ESS meet
preset values (Fig. 2). This avoids the trial-and-error warmup practice and improves efficiency as the number of
both the warmup iterations and sampling iterations can be reduced.

Results

Figure 1: ode_ckrk vs ode_rk45 benchmark: Van der Pol equation (Time in seconds).

Aggregate chains
Update metric
Update stepsize
Check convergence

Aggregate chains
Update metric
Update stepsize
Check convergence

C
on

ve
rg

en
ce

 te
st

 p
as

se
d

Stepsize
adaptation

Stepsize
adaptation

Chain 1

Chain 2

Chain 3

Chain 4

Warmup Post-warmup
Sampling

Initial
buffer

Window 1 Window n Terminal
buffer

Figure 2: Cross-chain warmup algorithm.

New coupled PK–effect–compartment solvers

The latest PMX additions are PKPD solvers that analytically solve one- & two-compartment PK model coupled with
an effect-compartment, so that the following two statements are equivalent:

x = pmx_solve_onecpt_effcpt(time, amt, rate, ii, evid, cmt, addl, ss, theta, F, tLag); // theta=[CL,V,ka,ke]
x = pmx_solve_linode(time, amt, rate, ii, evid, cmt, addl, ss, K, F, tLag); // less efficient

K =

−ka 0 0
ka −C L/V 0
0 ke −ke

 .
R workflow based on cmdstanr

We recommend use of the cmdstanr package as Torsten’s R interface to simplify the installation process across
platforms. The following script builds Torsten, fits an effect compartment model example, and generates posterior
predictive checking (PPC) plots.

library(tidyverse)
library(ggplot2)
library(cmdstanr)
library(bayesplot)
library(posterior)

system('git clone https://github.com/metrumresearchgroup/Torsten.git')
download Torsten
set_cmdstan_path("Torsten/cmdstan") # point to Torsten's cmdstan
rebuild_cmdstan() # build Torsten
mod <- cmdstanr::cmdstan_model("Torsten/example-models/effCpt/effCpt.stan",quiet=FALSE) # compile Torsten model

model fitting
fit <- mod$sample(data="Torsten/example-models/effCpt/effCpt.data.R",

init="Torsten/example-models/effCpt/effCpt.init.R"),→
pars <- c("CLHat", "QHat", "V1Hat", "V2Hat", "kaHat", "ke0Hat", "EC50Hat") # parameters to examine
subset.pars <- subset_draws(fit$draws(), variable=pars) # cherry-pick parameters' draws
mcmc_dens_overlay(subset.pars) # density plot

posterior predictive checking (PPC)
source("https://raw.githubusercontent.com/metrumresearchgroup/Torsten/master/example-models/effCpt/effCpt.data.R ⌋

") # Use observation to check posterior
predictions

,→
,→

cobs.pred.summary <- as_draws_df(fit$draws(variables=c("cObsPred"))) %>% summarize_all(function(x)
{quantile(x,probs=c(0.05,0.5,0.95))}) %>% select(starts_with("cObsPred")),→

pred.data <- rbind(cobs.pred.summary, unlist(mapply(rep, 1:nSubjects, (end - start + 1))), time) %>% t %>%
as_tibble() %>% rename(lb=V1, median=V2, ub=V3, subject=V4, time=V5),→

obs.data <- tibble(time=time[iObs], y=cObs, subject=unlist(mapply(rep, 1:nSubjects, (end - start + 1)))[iObs])
ppc.cobs <- function(start.id, end.id) {

ggplot(subset(data, subject >= start.id & subject <= end.id)) +
geom_ribbon(aes(x=time,ymin=lb,ymax=ub),fill="#b3cde0",alpha=0.8) +
geom_line(aes(x=time,y=median),color="#005b96") + geom_point(data=subset(obs.data, subject >=start.id
& subject <=end.id),aes(x=time,y=y),size=1.0)+

,→
,→
,→

scale_x_continuous(name="time (h)") +
scale_y_continuous(name="plasma drug concentration (ng/mL)") +
facet_wrap(.~subject)

} # one can also use ppc functions in bayesplot package
ggsave("ppc_study_1_5mg.pdf", ppc.cobs(1,25)) # PPC for plasma concentration in study 1 of 5mg dosing

We do PPC for PD in a similar way. See
https://github.com/metrumresearchgroup/Torsten/blob/master/example-models/effCpt/run.R for details,→

Conclusions and future work
Torsten proves to be a valuable add–on to Stan for Bayesian PMX modeling. It also facilitates exploring exper-
imental features and algorithms. The light-weight R interface cmdstanr enables Torsten to support major OS
platforms and simplifies the installation process. In the near future Torsten plans to

1. improve function flexibility, possibly based on the tuple data-type support
2. explore a user module system for Stan
3. develop additional built–in functions such as indirect response models

References

[1] B. Carpenter et al. Stan: A Probabilistic Programming Language. Journal of Statistical Software, 76(1):1–32, January 2017.

[2] B. Carpenter et al. The Stan Math Library: Reverse-Mode Automatic Differentiation in C++. arXiv:1509.07164 [cs], September 2015. arXiv: 1509.07164.

[3] Torsten: library of C++ functions that support applications of Stan in Pharmacometrics. https://github.com/metrumresearchgroup/Torsten.

[4] Yi Zhang and William R. Gillespie. Speed up population bayesian inference by combining cross-chain warmup and within-chain parallelization. In the 11th
American Conference on Pharmacometrics, November 2020.

[5] A. Vehtari et al. Rank-Normalization, Folding, and Localization: An Improved bR for Assessing Convergence of MCMC. Bayesian Analysis, pages 1 – 38, 2021.

Presented at Population Approach Group Europe Annual Meeting; 2-3 and 6-7 September 2021 yiz@metrumrg.com | billg@metrumrg.com | metrumrg.com/all-publications © Metrum Research Group 2021

https://github.com/metrumresearchgroup/Torsten

