Quantitative Understanding of the Longitudinal Relationship between Short-term MRI outcomes and Long-term Clinical Outcomes Measures in Multiple Sclerosis
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Abstract

Objectives: Multiple sclerosis is a relapsi disease which is

brain lesions on MRI is not fully established.

by distinct episodes of acute neurological worsening (relapse) and formation of new lesions on brain magnetic resonance imaging. The relation of relapse rate and formation of new

The objective of this analysis was to perform a model-based meta-analysis with individual level data of the placebo arm across multiple clinical trials to inform the underlying trends and quantify the variability within the disease process and across MRI endpoints. The primary
predictive goal is making long-term predictions (e.g. 2 year relapse rates) from short-term MRI endpoints and clinical data to guide evaluation and decision making for future phase II trials of novel compounds in MS.

Methods: Data for this analysis included patient-level data from eleven studies, with durations up to 2 years, in both secondary progressive MS (SPMS) and relapsing-remitting MS (RRMS) patients. The generative model was structured with latent variables linking observed

longitudinal outcomes, analogous to an item response theory model. The latent variable represented an unobservable disease state which was predicted by covariates and

were used as a non-parametric method to describe each individual’s disease activity over time and creates temporal correlation across endpoints.

We focused on out-of-sample prediction to measure the predictive performance on new data and

that the model is

and observed with inty by outcome measures. Gaussian processes

The test arm consisted of half of the patients with >1.75 years of data; the data for these patients were truncated to 6 months of data for

the model fitting, with the data after 1 year used for predictive evaluation. The markers of clinical disease activity were annualized relapse rate (ARR) and the MRI endpoints included: new/newly enlarging (N/NE) T2 lesions, T1 gadolinium enhancing (Gd+ T1) lesions and T2

lesion volume.

Results: The analysis set comprised 1999 patients, with 27,091 total MRI observations. In the holdout set, the predicted year 2 ARR between the 4th to 1st quartile had a ratio of 4.3 (0.883 to 0.205), compared to an observed ratio of 6.67 (0.859 to 0.127). Patients with different
types of MS (RRMS vs SPMS) had substantially different predicted year 2 ARR; for RRMS the mean ARR was 0.558 and a 95% CI of 0.213-1.31 and for SPMS the mean ARR was 0.269 with a 95% CI of 0.134 - 0.597, despite disease population not being included as a covariate in
the model. Simulations of patients with a range of baseline to 6 months measurements showed the long-term predictive power, for example comparing a patient with zero Gd+ T1 lesions and zero N/NE T2 lesions at month 6 to a patient with one of each type changed the simulated

year 2 ARR from 0.19 to 0.33.

Conclusions: A latent variable model with non-parametric functions of the disease trajectory is able to predict long term disease activity from short term data. This model allows for future incorporation of medication effects, both from historical trials and compounds under

development.
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This model-based meta analysis used individual patient level data from the placebo and stan-
dard of care arms from eleven clinical trials in both SPMS (two studies) and RRMS (nine
studies) to jointly model four longitudinal endpoints and a binary endpoint. Unlike typical
meta-analyses which use arm level data, using patient level data in this modeling allows for
predictions at an individual level for future trials, inferences about covariates, and avoids the
ecological fallacy. Individual disease trajectories were modeled to describe inter-patient vari-
ability. The model was set up in a Bayesian framework, allowing for natural incorporation of
in the model and

Figure 1: The arrows indicate the structural relationships between different data, parameters, and out-
comes in the model. The disease burden latent variable flows across the top of the diagram, and the
disease activity latent variable flows across the bottom.
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A Bayesian network model, which in the current form shares characteristics with a General-
ized Linear Mixed Model (GLMM), was fit to link together the covariates and outcomes. It
used two latent variables; one latent variable corresponded to total disease burden and the
other corresponded to short term disease activity [1].

The disease burden latent variable was estimated as a linear function of time, with patient
specific parameters estimated using a hierarchical model with covariates which partially
pools information across patients. The disease activity latent variable was composed of a

« ABayesian model was developed that characterized placebo data across studies, pop-
ulations, and drugs at an individual level.
« The model showed predictive validity at the individual level when predicting 2-year
ARR from 6 months of data. Further analyses suggested additional data can improve
predictive performance.
This model can be used to predict long term effects from limited and/or short term
available data.
Future planned analyses include:

- ion of arm effect sizes and compare treatments
- Predict efficacy of compounds in development
- Optimization of planned trial designs

— Link this model to other biomarker data (e.g. neurofilament light chains)

sented at the Ameri

‘hierarchial mean level, with an additive Gaussian process [2]. The Gaussian process intro-
duced a non-linear trajectory, which allowed for periods of greater activity and periods of
lower activity, and is interpreted as a patient specific trajectory of inflammatory MS activ-
ity. Covariates included for both latent variables were age, sex, and if a patient was Japanese.

The typical level of disease burden, the typical rate of change of disease burden, and typical
average disease activity all depended on the covariates, explaining some inter-patient and
inter-trial variability. Model eval focused on out-of-sample predictive

‘We used a test set of patients where their outcome data after 6 months was held out and their
year-two data used for model evaluation. A flexible model could fit the observed data well,
but also overfit the individual trajectories to the noisy observed data and then predict poorly
into a time period when data is unobserved. Out-of-sample prediction for model evaluation
validates the ability of the model to make accurate predictions in new circumstances.

The latent variable model was implemented in Stan, version 2.21 [3], using the default No-
U-Turn-Sampler with Hamiltonian Monte Carlo method, through the Rstan interface [4].

Figure 2: Data is split into 3 sets to evaluate predictive power on data not used to fit the model. 20%
of patients in studies with >100 patients are in the green final holdout set. Of the remaining patients,
50% of the patients with a duration of 1.75 years or longer are in the blue test set.

atistical Model

The disease burden was defined as:

Filt)=foi+ faut
log(T2 Volume; (1)) ~ Z(fi(1)), 01, df = 5)
Soi(t) ~ N (xiBy, 1)
Jai(t) ~ A (i3, 02)

The disease activity (acute, inflammatory aspects of MS) was defined as:

&i(t) = go,; +GP(t;0,K(a, p))
T1;(t) ~ Neg-Bin(exp(g;(1)), ¢1)
New T2;(t) ~ Neg-Bin(exp(io + &1 x gi(1)), )
Hazard of Relapse;(t) = ho x exp(x, + K5 X g(1))
Hazard of EDSS Progression,(t) = hy x exp(x, + ks x g(t))

* fi(t) is the latent process for patient i (and directly relates to T2 lesion volume).

« g(t) is the short-term disease activity process for patient i (and directly relates
to Gd+ T1 lesion counts and new T2 lesions).

* fo isan intercept random effect, with a normal distribution and covariate effects.

fa,i is a slope random effect, with a normal distribution and covariate effects.

Note that the slope was allowed to be negative.

+ oy is a random effect for the expected short-term disease activity, with a normal

distribution and covariate effects.

7 is the student-T distribution, parameterized with location, scale, and degrees

of freedom.

« are coefficients relating the latent variables to observed outcomes.

« hy and h, are baseline hazard rates for relapses, and EDSS progression, respec-
tively. For computational purposes, hazard was averaged over time intervals (typ-
ically 60 days), with the hazard evaluated at Lhe mldpoml of rhe interval.

« ¢ are dispersion for the

* X; is the covariate vector for patient i, with an included intercept term.

* B are covariate effects on the random effects.

* w are standard deviations of the random effects.

« tis the study day.

* GP is a gaussian process, with mean zero, evaluated at times t with kernel func-
tion K. The kernel function had its own parameters which depend on the choice
of kernel function. The kernel parameters were not patient specific.
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Model validation was done with two goals in mind. First, to show the accuracy of the model on held out data that was not used to fit the model (Table 2). Second, when applying the
model to new circumstances and data that were not used to fit the model, to assess whether the model produced reasonable inferences that conform to general clinical understanding and
previous work (Figures 5 and 6). Finally, we applied the model to make predictions about different circumstances relevant to trial design (Figures 4 and 6).

‘Table 1: Description of the 11 studies used in the modeling. Duration is summarized as mean
(sd). There were 9 RRMS and 2 SPMS studies included. The studies included both phase 2
studies of a duration of approximately half a year, and phase 3 studies of approximately 2
years in duration. Some of the studies were placebo controlled and others only used active

controls.
Study L
Start dy Duration in
Year bopulation n study (years)
FIRM (¢ 01) 2001 RRMS 314 1.84(0.443)
2002 RRMS 595 1.79 (0.580)
2003 RRMS 55 0.373 (0.0539)
2004 RRMS 65  0.438 (0.0824)
DEFINE (109MS301) 2007 RRMS 409 1.48 (0.589)
CONFIRM (109MS302) 2007 RRMS 363 1.50 (0.559)
ADVANCE (105MS301) 2009 RRMS 500 0.879 (0.157)
101MS203 2010 RRMS 47  0.366 (0.0679)
ASCEND (101MS326) 2011 SPMS 449 1.66 (0.658)
109MS305 2013 RRMS 113 0.452 (0.0467)
109MS308 2015 SPMS 30  0.184 (0.0913)

Figure 3: Endpoint trajectories in 12 sample patients. Each panel shows how the four end-
points (colored lines) change over time in 12 sample patients. The vertical black lines indicate
when the patient has a relapse. These patients show the general trend of disease activity (Gd+
T1 lesions, N/NE T2 lesions, and relapses) being correlated in time and across patients. How-
ever, the trajectories were heterogenous and within a two year period did not show consistent
trends over time.
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Figure 4: Simulations of year 2 ARR based on different amounts of lesion activity at baseline,
for a hypothetical patient with reference (mean) covariate values. Observations at baseline
had a long term effect on the ARR predictions by informing the distribution of average disease
activity. There was a large effect from varying the baseline lesion counts, from an ARR of 0.19
to 0.81 within the range considered.
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Model Predictions and Validation

Table 2: Out of sample prediction results demonstrate predictive power. The patients’
data (blue boxes in Figure 2) used to make predictions was truncated at six months, and the
predictions were made on the second year of relapse data (dark blue). Here, the patients are
grouped into quartiles based on the predicted ARR. This shows the predictive power of short
term data to predict long term outcomes, because the ARR of the fourth quartile was 4.5 times
the ARR of the first quartile.

Predicted ARR _Estimated Average
ARR

Quartile Observed ARR
1 0.205 0.127
2 0.333 0.360
3 0.508 0.538
4 0.883 0.859

Figure 5: The model demonstrates clinically relevant emergent properties. Specifically
the model to

the modeled rlationships. Each density curve s the predicted distribution of ARR for the pa-
tients diagnosed with each type of MS, and the tick marks are the observed AR in the studies
with a two year duration. MS type is not included in the model, but based on observed data
the model di the two based on the distribution of predicted relapse
rates, with the SPMS population having lower relapse rates. This suggests that the model is
reflecting underlying biological differences between the two populations. In addition, larger
T2 lesion volume was associated with lower relapse rates, reflecting a connection between
disease severity and a transition to less active forms of MS.
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Figure 6: To understand the modeled effect of reducing Gd+ T1 lesions (without changing
other disease characteristics), the modeled relationship between a potential change in the
Gd+ T1 lesions and the predicted change in ARR (over the same time period) was compared.
‘The dashed lines are estimated effects from Sormani 2013 etal. [5]. The intervals are credible
intervals which incorporate parameter uncertainty in the model. This model predicts smaller
ARR effects than the Sormani meta-anlaysis, which may reflect differences in the mechanism
different T1 Gd+ lesions (patients with naturally different T1 Gd+ lesion counts vs thera-
peutic effects), the incorporation of time effects into this model, and the difference between
modeling individual data compared with summary data. The model also can make predic-
tions of the relationship at across different time ranges for each endpoint and comparisons
between the other modeled endpoints.
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