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Introduction
Physiologically-based pharmacokinetic (PBPK) models mechanistically describe a
drug’s distribution in the body. Bayesian analysis integrates prior knowledge and
data to make inferences on model parameters. Bayesian PBPK modeling takes
advantage of the relatively strong prior mechanistic knowledge of the system of
interest while quantifying the uncertainty around the model parameters.

This study demonstrates convenient, open-source Bayesian PBPK modeling
frameworks in R and Julia. The results from this approach were validated against
the reported results from a previously developed model [1].

Methods
A full body population Bayesian PBPK model was built for the drug, mavoglurant,
in R/Stan and Julia/Turing.jl. The model structure is shown in Figure 1 and was
largely based on a previously developed model that was later implemented in the R
package, nlmixr [1, 2]. The open-source library, Torsten, was used to facilitate Stan’s
handling of pharmacometric data. The PBPK model was defined in Julia using the
SciML open-source tools. Bayesian inference of the parameters of interest was carried
out by running the No U-Turn Sampler (NUTS) on 4 different chains. Within-chain
parallelization was utilized to speed up run times. Three different implementations
were run: general and linear ordinary differential equation (ODE) solver runs in
Stan/Torsten, and a general ODE run in SciML/Turing.jl.

Figure 1. PBPK Model Structure. LU, HT, BR, MU, AD, SK, LI, BO, KI, PA,
SP, ST, GU, RB refer to lung, heart, brain, muscle, adipose, skin, liver, bone,
kidney, pancreas, spleen, stomach, gut, and rest of body, respectively. CLint is
intrinsic clearance.

General PBPK Model Equations:
Non-eliminating organ:
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A=amount; C=concentration; Q=blood flow; K b=partition coefficient; C L=clearance; fub=unbound
fraction in blood; subscripts T , A, V , and LU refer to tissue, arterial blood, venous blood, and lung,
respectively.

Statistical Model:

log(ci j) = N(log(ĉi j),σ
2))) (6)

ĉi j = fPBPK (t i j , Di , pi) (7)
pi = [θi , vi] (8)
θi = [C Lint i , K bBR, K bMU , K bAD, K bBO, K bRB] (9)

log(C Lint i) = N(log(ØC Lint),ω2) (10)

ci j and t i j=plasma concentration and time for subject i at timepoint j; ĉi j=mean of plasma con-
centrations; fPBPK =PBPK model; D=dose; p=parameters; θ=parameters to be estimated; v=fixed
parameters; C Lint=intrinsic clearance;ØC Lint=mean of CLint; K bBR, K bMU, K bAD, K bBO, and
K bRB=partition coefficients for brain, muscle, adipose, bone, and rest of body, respectively;
ω2=variance for C Lint intersubject variability; σ=residual error; N()=normal distribution.

Prior Distributions:

ØC Lint = lognormal(7.1,0.252) (11)
K bBR= lognormal(1.1,0.252) (12)
K bMU = lognormal(0.3,0.252) (13)
K bAD = lognormal(2.0,0.252) (14)
K bBO = lognormal(0.03,0.252) (15)
K bRB = lognormal(0.3,0.252) (16)
ω = hal f − Cauchy(0.0,0.5) (17)
σ = hal f − Cauchy(0.0,0.5) (18)

Results
The Bayesian PBPK modeling frameworks successfully and accurately inferred the posterior distributions of the parameters of interest (Figures 3 and 5), and diagnostics
showed that model predictions well characterized the observed data (Figures 2 and 4). The estimates from the three implementations were comparable (Table 1). As an
example, the posterior distribution for intrinsic clearance (CLint) had medians of 1404, 1403, and 1385 L/h for the general and linear ODE (Stan/Torsten), and the general
ODE (SciML/Turing.jl) applications, respectively. Given the composability of Julia packages, it was possible to use the same ODE model definition for the Bayesian analysis,
sensitivity analysis and population simulations that explored an alternative dosing scenario (Figures 6 and 7).

Figure 2. (A) Trace and (B) density plots for the Torsten General ODE
Application. CLintHat=intrinsic clearance mean; Kb=partition coefficient;
omega[1]=variance on CLint intersubject variability; sigma=residual error.

Figure 3. Posterior Predictive Check (PPC) for the Torsten General ODE
Application. Open circles represent observed data. Solid and dashed lines
represent median, 5th, and 95th percentiles of observed data. Dark and
light blue bands represent 95% credible intervals around the median, 5th,
and 95th percentiles of model prediction.

Figure 4. Trace and Density Plots for the Turing.jl General ODE Application.
ĈLint=intrinsic clearance mean; Kb=partition coefficient; ω=variance on
CLint intersubject variability; σ=residual error.

Figure 5. Posterior Predictive Check (PPC) for the Turing.jl General ODE
Application. Circles represent observed data. Solid lines represent median,
5th, and 95th percentiles of observed data. Dark and light blue bands rep-
resent 95% credible intervals around the median, 5th, and 95th percentiles
of model prediction.

Figure 6. Global Sensitivity Analysis in Julia. Horizontal red dashed line
represents the arbitrary cut-off value of 0.05.

Figure 7. PBPK Model Simulation in Julia (500 subjects x 500 replicates).
Dose administered was a single 50 mg IV infusion of mavoglurant with a
rate of 300 mg/h. Solid lines represent median, 5th, and 95th percentiles
of model predictions. Blue bands represent 95% credible intervals around
the different percentiles.

Conclusion
The current work demonstrated open-source workflows to build Bayesian population PBPK models. The general applicability of the approaches discussed here makes them
valuable tools for investigators interested in building Bayesian population PBPK models in an efficient, flexible, and convenient way.
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