A Suite of Open-Source Tools to Guide Efficient Pharmacometric Analyses

Katherine Kay, Ph.D.^{*1}, Kyle Baron, Pharm.D. Ph.D.^{*1}, Seth Green M.S.¹, Samuel Callisto, Ph.D.¹, Curtis Johnston, Pharm.D.¹, Kyle Barrett, M.S.¹, Devin Pastoor, Ph.D.^{1,2}, Jim Rogers, Ph.D.¹, Ana Ruiz-Garcia, Pharm.D. Ph.D.^{1,3}, Tim Waterhouse, Ph.D.¹, Matthew Wiens, M.A.¹, Matthew Riggs, Ph.D.¹

*These authors contributed equally to this work

¹Metrum Research Group, Tariffville, CT, USA, ²Posit (formerly RStudio), Boston, MA, USA (current), ³Gilead, City, ST, USA (current)

Abstract

BACKGROUND Quantitative scientists are tasked with building analytical models to support decisions about complex systems. Such modeling often involves an array of processes and tools that present a challenge to collaboration and ensuring quality compliance. The objective of this work was to provide the pharmacometrics community with a suite of standardized, freely available, open-source tools to efficiently conduct traceable, reproducible, and scalable pharmacometric analyses in a controlled R environment [1]. METHODS Metrum Research Group has developed a suite of open-source tools that can be used independently, or seamlessly integrated into a larger R-based ecosystem, for pharmacometric analyses. We have compiled example code, and accompanying documentation, for each of the tasks typically required in a population pharmacokinetic (PK) analysis workflow to showcase the wide-ranging functionality of these tools. We considered R package management, data specifications, and common modeling and simulation activities such as, exploratory data analysis, executing and managing NONMEM® models and parameter tables, and analysis reporting. While we framed this example in the context of a simple population PK and parameter tables, and analysis reporting. analysis, these packages can also be used in other types of pharmacometric analyses, e.g., pharmacokinetic-pharmacodynamic (PK-PD), quantitative systems pharmacology (QSP), and statistical models. All our packages were developed and are maintained through an iterative open-source software development life cycle (SDLC) [2]. This transparent process incorporates robust planning, iterative development, validation, and release of each package. RESULTS A complete, reproducible pharmacometric analysis workflow is hosted in a publicly available, version-controlled repository on GitHub [3] encompassing multiple states and stages of a modeling and simulation project. In addition to the scripted example,

vignettes and user guides provide step-by-step directions detailing how the R package ecosystem includes: bbi/bbr, lastdose, Metrum Package Network (MPN) and pkgr, mrggsave, mrgsolve, pmforest, pmplots, pmtables and yspec.

CONCLUSIONS Metrum Research Group developed a suite of open-source R packages to support traceable, reproducible, and scalable pharmacometric community with an example of how to use these tools.

Workflow

Package Showcase

- The yspec R package is designed to help you document and manage your analysis datasets and then use this documentation throughout your project to:
- Guide and document the data assembly process
- Annotate figures and tables efficiently
- Manage decode values for numerically encoded discrete data items
- Make submission-ready define documents

yspec acts as a single, central location for maintaining the metadata for your analysis datasets to manage these activities.

. Data specifications in yaml format

The **bbr R package** allows you to manage, track, and report modeling activities, through simple R objects, with a userfriendly interface between R and NONMEM[®]. bbr is used to submit models, process outputs and diagnostics, and iterate on models. It provides simple tagging and model inheritance trees to support replication and external review of your work.

1. Creating and submitting a model Create your first model object from a NONMEM control stream mod100 <- new_model(file.path(model_dir, 100))</pre>

- Submit the NONMEM model to run
- submit_model(mod100)

The pmplots R package allows you to make simple, standardized plots in a pharmacometric data analysis environment. The package provides a standard set of commonly used plots in pharmacometric analyses, as opposed to generating a new grammar of graphics.

Observed versus population predictions p1 <- dv_pred(data)</pre> *Observed versus individual predictions* p2 <- dv_ipred(data)</pre>

Combine for output: p1 + p2

Percent

decode: [male, female]

Below we demonstrate how to use this spec object throughout all phases of project work.

2. Interactive query of the analysis dataset

Query categorical data item		(Query continuous data item			
	name col	value SEX			name col	∨alue WT
spec\$SEX	type short	numeric SEX		spec\$WT	type short	numeric weight
	value	0 : male 1 : female			unit range	kg ·

3. Validating the dataset

Validate the contents of your dataset against the data specification (spec) file ys_check(data, spec, error_on_fail=FALSE)

Messages:

- spec has more items than cols in the data

- names in spec but not in data:
- AAG

[1] FALSE

4. Annotating plots and tables for project deliverables Extract the short label and units for use in figure axis column labels

contCovs <- axis_col_labs(specTex, c("AGE", "WT"), title_case = TRUE)</pre>

"AGE//Age (years)" "WT//Weight (kg)" Extract the short label and units for use in tables labs <- ys_get_short_unit(specTex, parens = TRUE, title_case=TRUE)</pre> "Age (years)" "Weight (kg)"

2. Iterative model development Create a new model based on an existing model mod101 <- copy_model_from(.parent_mod = mod100, .new_model = 101)</pre> Compare a model ctl file to its parent model model_diff(mod101)

3. Model evaluation and diagnostics

Parse NONMEM outputs into an R list object and use it for a quick look at the model specifics, and to check if any *heuristic problems were detected*

sum100 <- model_summary(mod100)</pre>

– parameter_near_boundary

Heuristic Problem(s) Detected:

Estimation Method(s):

Outpu

Dataset: ../../../data/derived/analysis3.csv

Records: 4292 Observations: 3142 Subjects: 160

Objective Function Value (final est. method): 33502.965

- First Order Conditional Estimation with Interaction

Create a simple tibble with parameter estimates

sum100 %>% param_estimates()

parameter_names estimate stderr random_effect_sd random_effect_sdse fixed diag shrinkage

<chr></chr>	<dbl> <dbl></dbl></dbl>	<db1></db1>	<dbl> <lgl> <lgl></lgl></lgl></dbl>	<db1></db1>
THETA1	0.484 0.063 <u>6</u>	NA	NA FALSE NA	NA
THETA2	4.14 0.031 <u>8</u>	NA	NA FALSE NA	NA
THETA3	1.11 0.0350	NA	NA FALSE NA	NA
OMEGA(1,1)	0.225 0.052 <u>9</u>	0.474	0.055 <u>7</u> FALSE TRUE	18.0
OMEGA(2,1)	0.086 <u>6</u> 0.025 <u>8</u>	0.466	0.103 FALSE FALSE	NA
OMEGA(2,2)	0.153 0.017 <u>2</u>	0.392	0.022 <u>0</u> FALSE TRUE	3.17
SIGMA(1,1)	0.041 <u>1</u> 0.001 <u>26</u>	0.203	0.003 <u>11</u> FALSE TRUE	5.34

Combine the model output and input data, via a unique row-identifier column, to create a single combined data frame data <- nm_join(mod100)</pre>

Input dataset		Combined
Output(s) from	Row-identifier column	dataset
\$TABLE		

4. Model annotation

Add notes to your model

The **pmtables R package** helps you create summary tables commonly used in pharmacometrics, such as data summaries and continuous or categorical covariate summaries. Further, it helps you turn any R table into a highly customized tex table suitable for reports generated with LaTeX or Markdown.

	Study	SUBJ	MISS	OBS	BLQ	OBS	BLÇ
Data summary table	SAD	30	0	424	0	13.5	0.0
	MAD	50	0	1199	0	38.2	0.0
tab <- data %>%	Renal	40	0	960	0	30.6	0.0
filter(EVID==0) %>%	Hepatic	40	0	559	0	17.8	0.0
<pre>pt_data_inventory(by=c("Study"="STUDYc")</pre>	All data	160	0	3142	0	100.0	0.0
stable()	SUBJ: sub BLQ: belo	jects w limit	of quar	ntificati	on		
	OBS: observations						
	Source code: poster-graphics.R						

Source file: pk-data-sum.tex

pm

The **pmforest R package** helps you visualize the covariates of interest in your analysis by creating grouped displays of point estimates and variability ranges for any kind of continuous data.

5. Generate define.pdf Create a define.pdf suitable for regulatory submission ys_document(spec, type = "regulatory", output_dir = "../data/derived", output_file = "define.pdf", author = "Kyle Baron")

Datasets

Description	Location
Example PopPK analysis data set	analysis3.xpt

1.1 Example PopPK analysis data set (analysis3.xpt)

VARIABLE	LABEL	TYPE	CODES
С	comment character	character	C = comment, . = non-comment
NUM	record number	numeric	
ID	subject identifier	numeric	
TIME	time after first dose (unit: hour)	numeric	
r		İ.	

mod100 <- add_notes(mod100, "systematic bias, explore alternate structure")</pre> Create highly customizable run logs to summarize model development run_log(here("model/pk"), .recurse = FALSE) %>% add_summary() %>% select(run, based_on, ofv, param_count, notes)

ofv param_count notes run based_on

100 NULL	33502.96	10 systematic bias, explore alternate compartmental structure
101 100	31185.58	12 eta-V2 shows correlation with weight, consider adding allometric weight
102 101	30997.91	12 Allometric scaling with weight reduces eta-V2 correlation with weight. Will consider additional RUV structures, Proportional RUV performed best over additive (103) and combined (104)

Other Packages

- The mrgsolve R package allows you to simulate from ODE-based population PK/PD and QSP models.
- The mrggsave R package can be used to save images in bulk and annotate figures with the file names of the source code and the output image.
- The lastdose R package can be used to calculate time after dose.
- The MPN (MetrumRG Package Network) and pkgr tools allow you to create and manage curated, reproducible R package environments.

Visit our Expo website

- You'll find: • Our approach to project set-up, data assembly, modeling and simulation activities, and reporting.
- Access to example code in a Github repository.
- Information and vignettes on MetrumRG's suite of

tools.

References

[1] Try Our Suite of Open-Source Tools.

https://metrumrg.com/try-open-source-tools/. Accessed: 2022-9-27.

- [2] Baron, K.T., Pastoor, D., Nevison, A., Kay, K. and Gastonguay, M.R. pmtables: TeX tables for pharmacometrics. In Population Approach Group Europe Annual Meeting; (2021).
- [3] Metrum Research Group organization on GitHub. https://github.com/metrumresearchgroup (2022).