STPM363 Application of Model-Based Meta-Analysis to Set Benchmarks for New Treatments of Systemic Lupus Erythematosus

Kosalaram Goteti¹, Ramon Garcia², William Gillespe², Jonathan French², Lena Klopp-Schulze³, Ying Li¹, Cristina Vazquez Mateo¹, Sanjeev Roy⁴, Oliver Guenther³, Lisa Benincosa¹, Karthik Venkatakrishnan¹ ¹EMD Serono Research and Development Institute, Inc., Billerica, MA, USA (an affiliate of Merck KGaA, Darmstadt Germany)

INTRODUCTION

- □ Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organ systems and is unpredictable in disease course, with fluctuating disease activity including flares.
- □In the past 60 years, there have been only two drugs developed that have been approved by the Food and Drug Administration (FDA) for treatment of SLE, anifrolumab and belimumab.
- □ In the development of SLE treatment it is important to assess a compound's efficacy by comparing it to benchmark drug treatments of SLE.
- U When evaluating the efficacy of an SLE treatment in a clinical trial, several composite instruments have been used to assess SLE disease activity such as: Systemic Lupus Erythematosus Responder Index (SRI) and BILAG-based Composite Lupus Assessment (BICLA).
- **The overall objective of this model based meta-analysis (MBMA) was to:** • perform a literature review of randomized clinical trials of drugs for SLE and curate the data identified in this review in a manner suitable for MBMA (2000-2021),
- develop a MBMA disease trajectory model (DTM) with treatment effects for SLE composite scores using summary-level data, and
- □ use the MBMA DTM to make predictions of SLE composite scores at treatment duration milestones for the FDA approved treatments of SLE, anifrolumab and belimumab.

METHODS

- SLE trials were searched using PubMed and www.clinicaltrials.gov using treatment name, SLE and clinical trial as search criteria (2000-2021).
- The extracted information of each manuscript consists of 4 data structures:
- □study descriptors common to all treatment interventions within a study, intervention - descriptors of drug regimen of treatments within a study
- (administration, frequency, dose, compound, etc),
- **unit** Baseline descriptors unique to treatment intervention (disease severity, SLE functioning, demographics, etc),
- Outcomes post-baseline SLE efficacy data. Extraction of data from plots in publications was performed using Webplot Digitizer.
- The final curated dataset consisted of 25 studies and 81 treatment arms. (Table
- A previously developed SLE latent variable model (*K Goteti et al ACOP Annual*) *Meeting 2021,* PIB-011) of placebo arm (placebo + standard of care treatments) patients from multiple studies was used to describe aggregate SLE endpoints (SRI-4, SRI-5, SRI-6, and BICLA) over time for the various SLE placebo and treatment arms in a Bayesian MBMA framework.
- Continuous dose-effect relationships using an Emax model were included for anifrolumab, belimumab, CC-220 (Iberdomide), epratuzumab, lulizumab pegol, and sifalimumab while the remaining drug, dose, route, and frequency combinations were modelled as discrete dose effects.
- Model variations were explored and compared using the expected log posterior density (ELPD) criterion and were evaluated using residual diagnostics and visual predictive checks (VPCs).
- □All modeling was done in CmdStanR.

²Metrum Research Group, Tarriffville, CT, US

³Merck KGaA, Darmstadt, Germany

⁴Ares Trading S.A., Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)

RESULTS

Table I: Drug regimens for different SLE treatments in literature review (2000-2021)

Amount (unit)	Route of Administration	Eroquerer	Study n (%)	Treatment Arm n (%)	Enrolled Patients n (%)	
		rrequency	II (70)	n (76)	II (70)	
Treatment: ALX-0061						
75 (mg)	subcutaneous	Q4W	1 (4)	1 (2)	64 (1)	
150 (mg)	subcutaneous	Q2W	1 (4)	1 (2)	62 (1)	
150 (mg)	subcutaneous	Q4W	1 (4)	1 (2)	62 (1)	
225 (mg)	subcutaneous	Q2W	1 (4)	1 (2)	62 (1)	
Treatment: Anifrolumab						
150 (mg)	IV	Q4W	1 (4)	1 (2)	93 (1)	
300 (mg)	IV	Q4W	3 (12)	3 (5)	459 (6)	
1000 (mg)	IV	Q4W	1 (4)	1 (2)	104 (1)	
Treatment: Atacicept						
75 (mg)	subcutaneous	QW	1 (4)	1 (2)	102 (1)	
150 (mg)	subcutaneous	QW	1 (4)	1 (2)	104 (1)	
Treatment: Baricitinib						
2 (mg)	oral	QD	1 (4)	1 (2)	105 (1)	
4 (mg)	oral	QD	1 (4)	1 (2)	104 (1)	
Treatment: Belimumab						
1 (mg/kg)	IV	Q2Wx3+Q4W	3 (12)	3 (5)	673 (8)	
4 (mg/kg)	IV	Q2Wx3+Q4W	1 (4)	1 (2)	111 (1)	
10 (mg/kg)	IV	Q2Wx3+Q4W	4 (16)	4 (7)	1145 (14)	

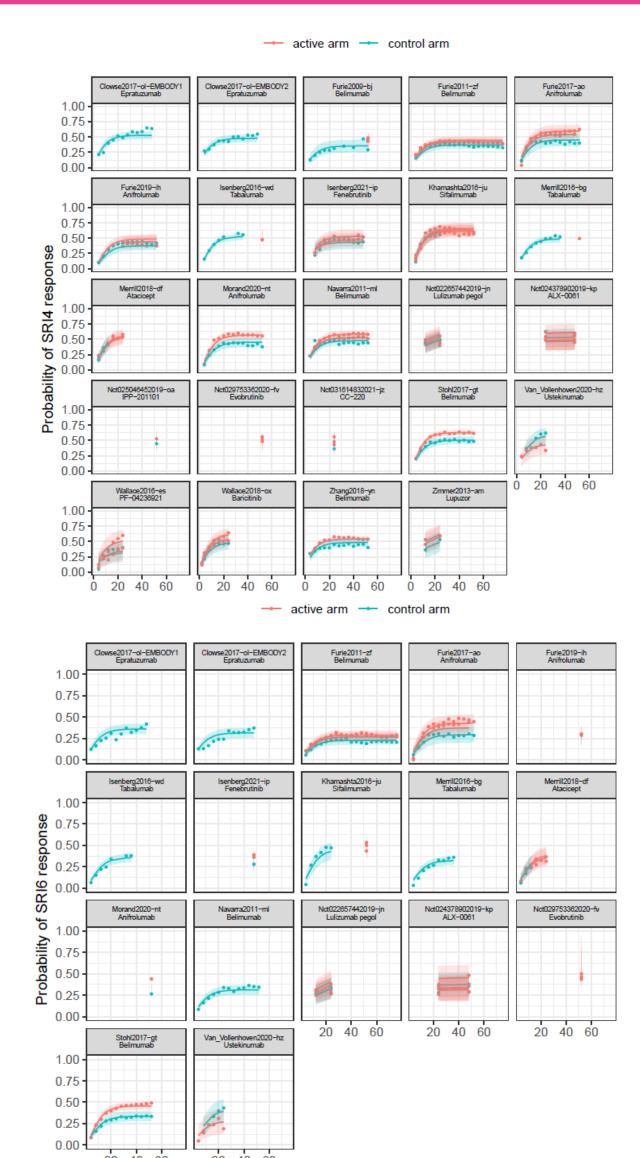
	Route of		Study	Treatment Arm	Enrolled Patients		
Amount (unit)	Administration	Frequency	n (%)	n (%)	n (%)		
200 (mg)	subcutaneous	QW	1 (4)	1 (2)	556 (7)		
Treatment: CC-220							
0.15 (mg)	oral	QD	1 (4)	1 (2)	42 (1)		
0.3 (mg)	oral	QD	1 (4)	1 (2)	82 (1)		
0.45 (mg)	oral	QD	1 (4)	1 (2)	81 (1)		
Treatment: Epratuzumab							
100 (mg)	IV	Q2W	1 (4)	1 (2)	39 (0)		
400 (mg)	IV	Q2W	1 (4)	1 (2)	38 (0)		
600 (mg)	IV	QW	3 (12)	3 (5)	568 (7)		
1200 (mg)	IV	Q2W	3 (12)	3 (5)	563 (7)		
1800 (mg)	IV	Q2W	1 (4)	1 (2)	38 (0)		
Treatment: Evobrutinib							
25 (mg)	oral	QD	1 (4)	1 (2)	118 (1)		
50 (mg)	oral	BID	1 (4)	1 (2)	117 (1)		
75 (mg)	oral	QD	1 (4)	1 (2)	117 (1)		
Treatment: Fenebrutinib							
150 (mg)	oral	QD	1 (4)	1 (2)	87 (1)		
200 (mg)	oral	BID	1 (4)	1 (2)	88 (1)		
Treatment: IPP-2	01101						
200 (mcg)	subcutaneous	Q4W	1 (4)	1 (2)	101 (1)		
Treatment: Lulizu	umab pegol	Treatment: Lulizumab pegol					

Amount (ur 1.25 (mg)

12.5 (mg) 12.5 (mg) Treatment: 200 (mg)

200 (mg) Treatment: 10 (mg)

50 (mg) Treatment:


200 (mg) 600 (mg)

1200 (mg) Treatment: 120 (mg)

120 (mg)

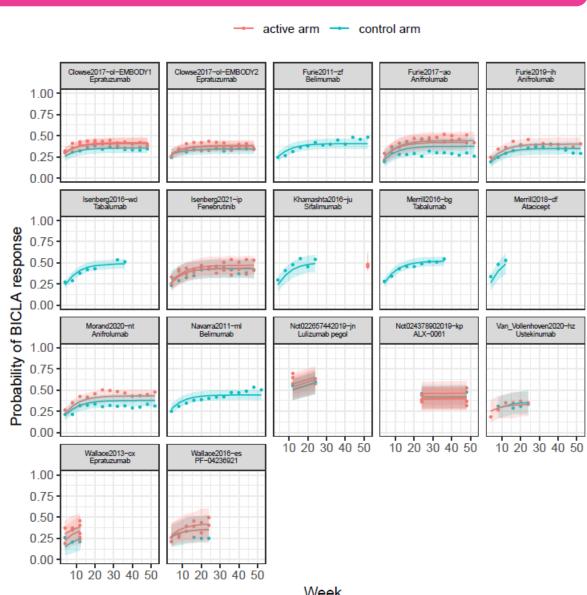
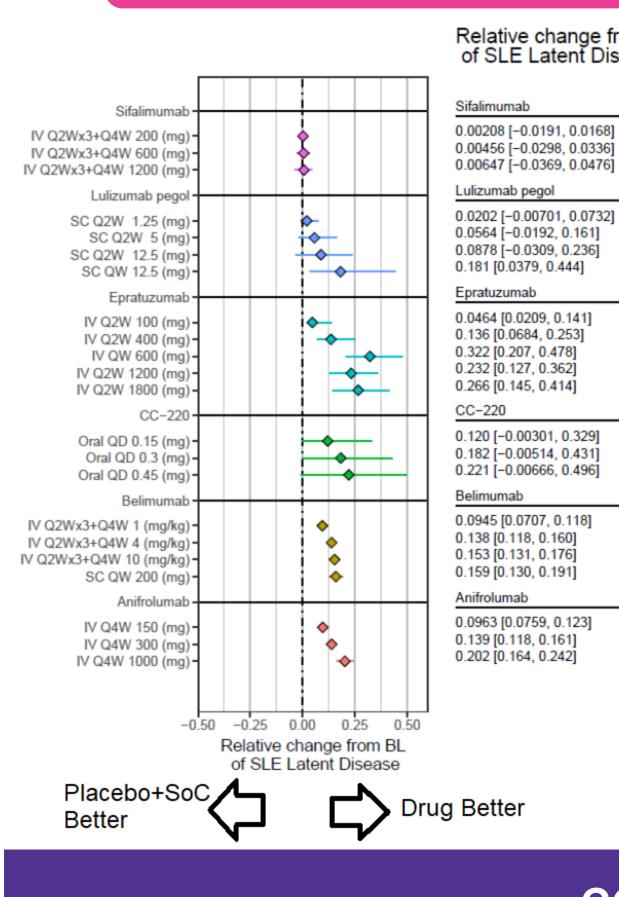

Treatment: 6-90 (mg/kg

Figure 1: Visual Predictive Checks for SLE endpoints


a	
response	
4	
itv of BICI	
robabil	

nit)	Route of Administration	Frequency	Study n (%)	Treatment Arm n (%)	Enrolled Patients n (%)	
	subcutaneous	Q2W	1 (4)	1 (2)	70 (1)	
	subcutaneous	Q2W	1 (4)	1 (2)	68 (1)	
	subcutaneous	Q2W	1 (4)	1 (2)	68 (1)	
	subcutaneous	QW	1 (4)	1 (2)	69 (1)	
: Lupuzor						
	subcutaneous	Q2W	1 (4)	1 (2)	51 (1)	
	subcutaneous	Q4W	1 (4)	1 (2)	49 (1)	
: PF-04236921						
	subcutaneous	Q8Wx3	1 (4)	1 (2)	45 (1)	
	subcutaneous	Q8Wx3	1 (4)	1 (2)	47 (1)	
: Sifalimumab						
	IV	Q2Wx3+Q4W	1 (4)	1 (2)	108 (1)	
	IV	Q2Wx3+Q4W	1 (4)	1 (2)	108 (1)	
	IV	Q2Wx3+Q4W	1 (4)	1 (2)	107 (1)	
: Tabalumab						
	subcutaneous	Q2W	2 (8)	2 (4)	753 (9)	
	subcutaneous	Q4W	2 (8)	2 (4)	754 (9)	
Ustekinumab						
g-mg)	IV-SC	once-Q8W	1 (4)	1 (2)	60 (1)	

- belimumab, anifrolumab, and epratuzumab (Table I).
- Area and Severity Index (CLASI) and Lupus Low Disease Activity State model development due to data limitations.
- according to ELPD.
- MBMA DTM. (Figure 1)
- 0.79 mg/kg (95% CI = (0.33, 1.5)). (Figure 2)

- disease severity was collected for each treatment arm.
- longitudinal efficacy data of SRI and BICLA SLE outcomes.
- treatments anifrolumab and belimumab.

RESULTS

□ The literature review identified 25 different studies, 81 different treatment arms, and a total of 16 different drugs of SLE, with the most common being

□ The most common endpoints reported were SRI-4, SRI-6, BICLA, and SRI-5. Other efficacy outcomes, such as Cutaneous Lupus Erythematosus Disease

(LLDAS), were not widely reported so they were not included as outcomes in

□ After exploring model variations, a model with relative change treatment effect and without any treatment effects on the rate parameter provided adequate fit

Residual diagnostics of this model were not reflective of any model deficiencies, and VPCs showed alignment between the observed and simulated data; therefore, this model was selected as the final predictive

□ Model estimates indicate that for a treatment arm receiving anifrolumab (mg) IV Q4W treatment, the effect at 50% of Emax is achieved at a dose of 259 mg (95% CI = (71, 544)) and for a treatment arm receiving belimumab IV (mg/kg) Q2Wx3+Q4W treatment, the effect at 50% of Emax is achieved at a dose of

Figure 2: Treatment effect estimates using MBMA SLE DTM

Relative change from BL of SLE Latent Disease Relative change from BL of SLE Latent Disease 0.00208 [-0.0191, 0.0168] -0.178 [-0.308, -0.0635] IV-SC once-Q8W 6-90 (mg/kg-mg) -0.0884 [0.0667, 0.110] 0.0695 [0.0490, 0.0915] SC Q4W 120 (mg) · SC Q2W 120 (mg) · F-04236921 0.0202 [-0.00701, 0.0732] PF-042369 0.346 [0.165, 0.553] -0.101 [-0.315, 0.107 SC Q8Wx3 10 (mg) SC Q8Wx3 50 (mg) 0.192 [0.0208, 0.429] 0.108 [-0.0479, 0.323] SC Q4W 200 (mg) SC Q2W 200 (mg) IPP-20110).124 [-0.0545, 0.356] SC Q4W 200 (mcg) · Fenebrutin 0.0970 [0.0267, 0.172] 0.00785 [-0.0622, 0.0842] Oral QD 150 (mg) · Oral BID 200 (mg) · i-----Evobrutir 0.135 [-0.203, 2.05] Oral QD 25 (mg) Oral BID 50 (mg) Oral QD 75 (mg) 0.0370 [-0.276, 1.50 0.111 [-0.223, 1.85] Baricitinib 0.128 [0.0236, 0.251] 0.237 [0.129, 0.365] Oral QD 2 (mg) Oral QD 4 (mg) -0.000580 [-0.0826, 0.0898] -0.0364 [-0.117, 0.0528] SC QW 150 (mg) · SC QW 75 (mg) · ALX-00 -0.115 [-0.349, 0.140] -0.150 [-0.371, 0.0880] -0.0996 [-0.321, 0.160] SC Q4W 150 (mg SC Q2W 150 (mg) -SC Q2W 225 (mg) -SC Q4W 75 (mg) -0.235 [-0.0251, 0.698] Relative change from B of SLE Latent Disease Placebo+SoC Drug Better Better

CONCLUSION

□ A literature review of randomized clinical trials of drugs for SLE was performed where summary-level data of longitudinal efficacy data, dose regimens, and baseline

□ This summary data was used to develop a latent MBMA DTM for the SLE

□ The model included a continuous Emax dose effect for the FDA approved SLE

□ The final MBMA DTM can be used to predict response rates of SRI and BICLA so they can be used as benchmarks for new treatments of SLE.