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Demographics METHODS

 Empagliflozin is a potent and highly selective oral sodium-dependent glucose Table 1: PK model: Comparison of baseline continuous covariates by study.
transporter-2 (SGLI-2) inhibitor for the treatment of type 2 diabetes mellitus . : . * The PK model included data from 223 observations and 74 patients receiving em-
(T2DM) in adults and pediatrics [1]. Variable n Mean Median SD Min/Max pagliflozin 10 and 25 mg once daily.
Study 1218.91 : : : ..
e Study 1218.91 was a double-blind, randomized, placebo-controlled, parallel group * i ) e The ER model included data from 394 observations and 103 patients receiving em-
trial to evaluate the efficacy and safety of empagliflozin and linagliptin over 26 Weight (kg) 74 96.6 90.0 26.2 425/169 pagliflozin (N=52) or placebo (N=51).
weeks, with a safety extension period up to 52 weeks, in children and adolescents Age (years) 74 145 145 190 10.0/17.0 . . .
with T2DM Estimated GFR (ml/min/1.73m?) 74 127 125 252 89.7/241 * The analyses were conducted using Markov chain Monte Carlo (MCMC) Bayesian
' : ' ' estimation in NONMEM®.
e Population PK and ER models previously developed for empagliflozin [2] in adults Study 1245.87 L . . . o
and adolescents were re-estimated in a Bayesian framework to characterize the PK Weight (kg) 27 968 920 239 61.7/143 ° The pTioT distributions were defined from point estimates and uncertainties of the
and ER (glycosylated hemoglobin (Alc) lowering) using the pediatric data from Age (years) 27 14.1 150 199 10.0/17.0 previous adult PK and ER model parameters.
Study 1218.91 and assess any differences in relation to adult. Estimated GFR (ml/min/1.73m2) 27 196 190 68.6 88.0/424 * For PK parameters of primary interest, including CL/F and V2/F, weakly uninfor-
e Similar empagliflozin exposures are achieved for a 10 mg dose in pediatric and Previous Adults mative priors were used.
adult subjects. Weight (kg) 4346 84.1 824 194 38.7/175 e The parameter of drug potency for lowering HbAlc was fixed, as in the previous
Age (years) 4346 57.4 58.0 10.1 19.0/98.0 model, while uninformative priors were used for all other ER model parameters.

e Pediatric patients achieved a slightly larger, but highly variable, placebo-adjusted

. . ) . . 2
Alc decrease relative to adults at week 26 (Figure 4: -0.699% vs. -0.528%). Estimated GFR (ml/min/1.73m") 4346 85.6 844 217 153/334  Covariate effects of interest were incorporated using a full covariate modeling ap-
e The Bayesian estimation approach enabled the characterization of empagliflozin PK proach.
and ER in a limited sample of pediatric patients and borrowed from what is already
known about PK and ER in adults.
RESULTS
Figure 1: PK model: Visual predictive check (VPC) for empagliflozin Figure 2: PK model: Distributions of AUCss values from Monte Carlo simulations
concentration versus time after dose. in adults and pediatric patients using the previous adult PK model and the
* The empagliflozin PK was well-described by a two-compartment model with current pediatric PK model respectively.
sequential zero-order and first-order absorption with covariate effects of sex,
age, race, and estimated glomerular filtration rate (eGFR) on CL/E and fixed
allometric exponents on CL/E V2/E Q/E and V3/F (Figure 1).
= |  Individual CL/F estimates were consistent with those of adults from the prior 15000 -
g model. ¢
c
S e Simulations of AUCss following the administration of 10 mg once daily em- .
b= pagliflozin demonstrated that adult and pediatric subjects exhibit similar
% AUCss (Figure 2). Q ®
S 100 - : : : .
S  The ER data was adequately described by a turnover model with disease 5 10000 8
g progression (PROG) and AUCss inhibiting the HbA1c synthesis (Kin) through g s
E an inhibitory maximum effect (Imax) relationship (Figure 3). Tg’ ’
c?é’ o * Insulin co-therapy was included as a covariate on the baseline Alc and 8 ! o
g PROG. The time-varying eGFR and baseline Alc were included as covari- i '
S k=
5 10- ates on Imax. é i
E e Simulations showed the placebo-adjusted Alc decrease at week 26 in the ?g 5000 -
S pediatric population was larger than that in the adult population (Figure 4-: g
T -0.699% vs. -0.528%). L1
9
o e Insulin co-therapy resulted in a larger magnitude of placebo-adjusted Alc
@ decrease in both pediatrics and adults, with the magnitude being larger in
o 11 , , . pediatrics.
0 10 20 30 0
Time after dose (h) e All adjustments to the variance and location of the prior distribution for Adult Pediatric
AUC50 had minimal impact on the posterior distribution of the model pre-
dicted placebo adjusted HbAlc change from baseline at 26 weeks (Figure
5).
Figure 3: ER model: Visual predictive check (VPC) for HbAlc change from Figure 4: ER model: Box plot of placebo-adjusted HbAlc change from baseline Figure 5: ER model: Impact of AUC,, at half-maximal inhibition of HbAlc
baseline versus time after first dose; stratified by treatment arm and insulin values at 26 weeks after treatment start from Monte Carlo simulations in adults production rate (AUC50) Bayesian prior variance and scale on typical
co-therapy at baseline. and pediatric patients using the previous adult ER model and the current placebo-adjusted HbA1lc change from baseline values at 26 weeks after treatment
pediatric ER model respectively. start.
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