Consistency between ML and classical approaches for covariate identification

> Matthew Wiens March 26, 2024

RESEARCH GROUP

BIG IDEA

ML WORKFLOW: REGULARIZATION AND INTERPRETABLE AI

- Assemble data and choose model structure
- Tune (regularizing) hyperparameters for complex data
 - Large number of covariates
 - Complex relationships (nonlinear, interactions)
 - Non-standard data types (-omics)
- Interpret model fit
 - Shapley values
 - Variable importance
 - Predictions

SHAPLEY VALUES FOR COVARIATE INTERPRETATION

- Idea: Value of players (features) drafted onto sports team (model)
- Characterize:
 - magnitude
 - variability
 - shape
- Example: Predicting changes in subtype of Multiple Sclerosis

Non-linearity and Interactions

ASCPT 2024 ANNUAL MEETING

Wiens et. al. American Conference on Pharmacometrics 2022

REGULARIZATION IN PARAMETRIC MODELS

What if we don't think we can estimate or need an ML model, but have lots of covariates?

- Regularization for Bayesian Models
 - Shrink irrelevant effects to 0
 - Using informative priors
 - Priors are linked to real-world assumptions
- *Spike-and-Slab* or *Horseshoe* in exposure-response
- Straightforward implementation in Stan/brms

ASCPT 2024 ANNUAL MEETING

Garica, R and Rogers, J. Boston Pharmaceutical Symposium 2023

SPARSITY-INDUCING PRIORS FOR VARIABLE SELECTION: Results

- Clear differences between important covariates and irrelevant covariates
- No need for correlation heuristics
 - Beware of confounding if using a lot of covariates
- Probabilistic inferences about variable selection from the model

Example Parameter Credible Intervals

CONCLUSIONS

Shapley Values for interpreting ML models

- More than just finding important covariates
- Can be applied to complicated parametric models
- Opportunities and applications for regularizing parametric models
- Value in incorporating pieces of ML into other analyses
 - Bayesian non-parametrics
 - Probability weights in causal inference