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Background
Reinforcement Learning (RL)

• An agent learns a policy to optimize a reward given that it is in a certain state.

– The agent is the machine learning model.

– The policy is a decision that changes the current state of the system.

– The reward is a function that gives positive value for desired actions and nega-
tive values for undesired actions.

• RL is advantageous over traditional supervised machine learning situations where
the outcome is unclear, especially when the outcome is probabilistic due to random
sources of variation.

• RL is commonly used to create game players (i.e., AlphaGo) which require averaging
over a large number of potential outcomes for a large number of potential policies to
determine the correct one.

• RL has recently begun to be used within pharmacometrics for precision dosing in
quantitative systems pharmacology (QSP) and real-time dosing, and there is a wide
array of potential applications of RL within the field of pharmacology [1].

Challenges

• RL is extremely sensitive to the design of the reward function, and there is no standard
methodology for defining the reward function.

• Integration of pharmacodynamic (PD) outcomes with pharmacokinetic (PK) profiles
is ideal for defining the reward, but this adds an additional layer of uncertainty.

• RL requires very large training data sets, which is often a challenge in PK-PD analyses.

Opportunities

1. RL can be used to average over unknown sources of variation (such as inter-individual
variability (IIV)).

2. RL can be used for sequential decision making such as dose adjustment based on
observed outcomes and future expected rewards.

Objectives
Perform a proof-of-concept study to apply RL to a PK problem and identify future areas
of research.

• Design a reward function that is capable of balancing penalization of both subthera-
peutic and supratherapeutic exposures (minimum concentration in the dose interval
(Ctrough) and area under the concentration-time curve (AUC)).

• Identify future use cases of RL for dose optimization.

Methods
• A workflow was created to train a reinforcement learner to provide an optimal dose

regimen based on individual sets of covariates (Figure 1).

– The optimal vancomycin dose for the treatment of methicillin-resistant Staphy-
lococcus aureus (MRSA) is recommended to lead to PK profiles with a Ctrough
between 15 and 18.2 mg/L and an AUC between 400 and 600 mg*hr/L [2].

Figure 1. Process schematic of neural net (NN) reinforcement learner. Covariate sets included
individual weight (WTi), serum creatinine (SCRi), age (AGEi), and dose (DOSEi).

• A PK model with covariate effects and IIV was used to simulate PK profiles for selected doses
of vancomycin [3].

– A two-compartment model for vancomycin was used to generate the exposure metrics
used in the reinforcement learner.

– A weight effect was included on both central and peripheral volume of distribution. The
effects of maturation, age, and serum creatinine were included on clearance.

• A training data set of 10,000 individuals composed of model covariates (age, weight, and serum
creatinine) was generated from NHANES [4]. Doses between 20-35 mg/kg were randomly
assigned to each simulated subject, and the resulting PK profiles and associated reward were
calculated.

• A neural net was fit in R using TensorFlow [5]with the model covariates and dose as predictors
and the reward as the outcome.

• Separate reward functions for Ctrough and high AUC were designed to reward exposures in the
optimal range and penalize exposures known to lead to toxicities based on literature (Figure
2) [2].
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Figure 2. Final reward function used in RL. The reward function selected used a combination
of linear and step functions. The green shaded regions indicate ideal exposure ranges, while
yellow and red shaded regions indicate sub-optimal and dangerous exposure ranges.

Methods (continued)
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Figure 3. Simulation workflow for an example
subject.

• 50 replicates for each of 100 new virtual subjects were simulated with covariate sets drawn from the NHANES dataset
[4].

• PK profiles and the resulting rewards were generated both by the reinforcement learner and under standard-of-care
(SOC) regimens (Figure 3) . Both low-dose and high-dose standard-of-care (SOC) regimens were simulated [2].

– Low-dose SOC was simulated as a single 20 mg/kg dose.

– High-dose SOC was simulated as a single 35 mg/kg dose.

• Both SOC regimens were based on exact body weight, rounded to the nearest 250 mg increment, and was not allowed
exceed 3000 mg.

• Dose recommendations were taken directly from the reinforcement learner. An additional scenario was tested which
capped dose recommendations from the reinforcement learner to a maximum dose of 3000 mg and discretized to 250
mg increments that constrained regimens within clinically implementable ranges.

Results

Figure 4. Exposure metrics, dose recommendation, and reward distribution for each scenario. The two relevant exposure met-
rics for the reward function were Ctrough (mg/L) and AUC (mg*hr/L). Individual values overlaid as points over violin plot illustrating
distribution of values. Within-scenario median included as overlaid triangle.

Table 1. Summary of reward, dose, Ctrough, and AUC by scenario.

• Doses identified using the RL approach on average
generated a larger reward (i.e., exposures within
optimal range) when compared to SOC dose regi-
mens (Figure 4, Table 1).

• Even when doses were capped to a maximum of
3000 mg, the RL dose regimens outperformed the
SOC regimens (Figure 4, Table 1).

• The model was extremely sensitive to the choice of
reward function.

– The chosen reward function tended toward
a higher-risk solution, pushing higher doses
to maximize time in the ideal exposure range
(Figure 4).

– Alternative functions tested led to different
outcomes, such as minimizing doses to reduce
potential adverse effects.

• Doses proposed by the RL were generally different
than those recommended by the weight-based SOC
dose regimen (Figure 5), leading to different expo-
sures over time (Figure 6).

1000

2000

3000

4000

5000

2000 2400 2800
High dose recommended
by standard of care (mg)

D
os

e 
re

co
m

m
en

de
d 

by
R

ei
nf

or
ce

m
en

t L
ea

rn
er

 (
m

g)
Figure 5. Comparison of doses proposed by each scenario.
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Figure 6. PK profiles of representative individuals. Van-
comycin concentration-time profiles of representative individ-
uals for each of the four simulation scenarios.

Conclusions
• Reward functions that gave high rewards in the optimal range of Ctrough and AUC and

linearly decreasing rewards outside of the optimal range led to dose suggestions in
line with clinical guidance.

• While allowing higher doses than the clinically-advised maximum led to higher re-
ward values in some individuals, the rewards for RL-recommended optimal doses
were still higher than those according to the SOC when the RL-recommended dose
was capped at the maximal clinical dose.

• While the RL adopted a "higher risk, higher reward" strategy, the behavior could be
altered by changing the form of the reward function.

• Although only the starting dose was identified by the approach shown here, this proof
of concept motivates using this approach in selecting optimal maintenance dose reg-
imens as well.

Future Directions
• This approach used only PK metrics within the reward function. The next iteration

will consider a PD outcome (such as bacterial load, kidney injury, and other markers
of safety and efficacy) to inform the reward function.

• RL has the most benefit for solving problems where decisions must be made sequen-
tially. Future work will apply RL to determine a loading dose and subsequent main-
tenance dosing.

• A single deep RL was used to learn associations between covariates, doses, and re-
wards. In the future, individual neural nets (where 1000 simulations of dose and
reward outcomes are performed for a single individual, and a neural net is built to
model these relationships) will be compared to the approach described here.

• All code used to perform this work has been written in R. While this was sufficient
to run a single and relatively simple neural network, more ambitious projects may
benefit from the added flexibility of implementing in Python and running on GPU
processors.References
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