
Gompertz Cure Rate Survival Models with Stan and brms
Todd Yoder, Andrew Tredennick, Timothy Waterhouse
Metrum Research Group, Boston, MA, USA

Abstract
Objectives: In drug safety data it is common for a proportion of the population
to never experience a specified adverse event. Standard parametric survival mod-
els assume the survival curve approaches zero and fail to characterize this aspect
of safety data. A Gompertz distribution with a negative scale parameter allows
the survival curve to have a non-zero asymptote and may better characterize sur-
vival data where a proportion of the population never experiences the event of
interest [1]. The brms package in R enables Bayesian modeling with Stan [2, 3].
The Gompertz distribution is not natively supported in brms or Stan, and a cus-
tom probability distribution was implemented in the software to enable cure rate
model fitting and inference.
Methods: The following Gompertz distribution functions were defined as cus-
tom Stan functions: log probability density, log cumulative distribution, log com-
plementary cumulative distribution, and random generation function. The Stan
functions and the log likelihood of the survival model were used to define the
Gompertz model as a custom family in brms. Data were simulated from a mix-

ture cure rate model with a constant hazard to demonstrate implementation of
the custom brms family. With the custom brms family in place, standard brms
tooling was used for model fitting and inference.
Results: The Gompertz distribution better characterized the simulated survival
curve than an Exponential, Lognormal, or Weibull distribution. The leave-one-
out expected log pointwise predictive density (ELPD) model criterion identified
the Gompertz model as the most favorable model, and visual predictive checks
showed that the asymptotic assumption of the standard survival models led to
an overprediction of adverse events in the latter part of the simulated study. The
Gompertz model did not suffer from such a misspecification and characterized
the data well.
Conclusions: The Gompertz distribution characterized the simulated survival
data. The custom brms family can be used to model exposure-response data
where a proportion of the population never experience the event of interest.

Methods
As a case study, time-to-event data were generated for 1000 virtual subjects, with 60% of the population susceptible to the event of interest. Events were simulated
among the susceptible population by an Exponential distribution with a hazard of 0.08 (1/day). Censoring was simulated by an Exponential distribution with a
hazard of 0.06 (1/day).
Four parametric survival models were fit to the data via the brms R package: Gompertz, Exponential, Lognormal, and Weibull. The Gompertz distribution is not
natively supported by Stan or brms and was implemented as a custom distribution in brms, called a custom "family". The Gompertz survival model can be defined
by the hazard function:

h(t) = µeγt ,

where µ > 0 is the shape parameter, and γ is the scale parameter. When γ < 0 the Gompertz distribution describes a cure model where the survival function is
bounded below by the cure fraction exp(µ/γ).
Three Stan functions are needed for a custom continuous family in brms: the probability density ( f ), cumulative distribution (F), and complementary cumulative
distribution (F̄), each defined on a log scale. For the Gompertz distribution these are defined by Equations (1–3).
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A fourth function, a random generation function, was needed for simulation from the Gompertz model. Solving Equation (3) for t and sampling from a Uniform(0, 1)
distribution in place of F(t) yielded
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If γ < 0 then F(t) is bounded above by a value less than 1, and the argument of the outer log in Equation (4) could be negative. This occurs when the uniform
random variable is greater than 1− exp(µ/γ), i.e., when the sampled proportion is greater than the proportion of the population who would ever have an event. In
this case, an event time of infinity was assigned. Equations (1–4) were defined with Stan syntax and stored as a string in R (Code 1).

s tan _ funs <− "
r e a l gompertz_ lpd f ( r e a l t , r e a l mu, r e a l gamma) {

re turn log (mu) + gamma* t + mu/gamma − mu/gamma*exp (gamma* t ) ;
}
r e a l gompertz_ l c d f ( r e a l t , r e a l mu, r e a l gamma) {

re turn log (1 − exp (mu/gamma*(1 − exp (gamma* t ) ) ) ) ;
}
r e a l gompertz_ l c c d f ( r e a l t , r e a l mu, r e a l gamma) {

re turn mu/gamma*(1 − exp (gamma* t ) ) ;
}
r e a l gompertz_ rng ( r e a l mu, r e a l gamma) {

r e a l sim_ time ;
sim_ time = 1/gamma* log (1 − gamma/mu* log(1−uniform_rng (0 , 1 ) ) ) ;
i f ( i s _nan( sim_ time ))

sim_ time = p o s i t i v e _ i n f i n i t y ( ) ;
re turn sim_ time ;

}
"

Code 1. Custom Stan functions defined in R.

gompertz <− brms : : custom_ fami ly (
name = " gompertz " ,
dpars = c ( "mu" , "gamma" ) ,
l i n k s = c ( " log " , " i d e n t i t y " ) ,
lb = c (0 , NA) ,
type = " r e a l " ,
log _ l i k = func t ion ( i , prep ) {

mu <− brms : : get _dpar ( prep , "mu" , i = i )
gamma <− brms : : get _dpar ( prep , "gamma" , i = i )
t <− prep$data$Y[ i ]
cens <− prep$data$cens [ i ]
i f ( cens == 0) x <− gompertz_ lpd f ( t , mu, gamma)
i f ( cens == 1) x <− gompertz_ l c c d f ( t , mu, gamma)
re turn ( x )

} ,
p o s t e r i o r _ p r e d i c t = func t ion ( i , prep , . . . ) {

mu <− brms : : get _dpar ( prep , "mu" , i = i )
gamma <− brms : : get _dpar ( prep , "gamma" , i = i )
re turn ( gompertz_ rng (mu, gamma))

}
)

Code 2. Custom brms family defined in R.

The Gompertz family was defined in brms with the custom_family() function (Code 2). A name argument is required and must match the distribution name
used in the custom Stan functions, i.e., "gompertz". The distribution parameter names, their link functions, and bounds on the parameters were also specified. Each
brms family must have a µ (intercept) parameter. The distribution was specified as continuous by setting the type to "real".
Two additional post-processing functions were defined as part of the custom brms family: the log-likelihood (log_lik()) and a posterior response prediction
function (posterior_predict()). The response prediction function used the previously defined Stan function, gompertz_rng() (Code 1). Posterior draws of
the expected value (posterior_epred()) can also be defined with the custom brms family but was omitted because the Gompertz distribution with a negative
scale parameter has a non-finite mean survival time.
A prior with mass around log(µ) ∈ (−6,−3) and γ ∈ (−0.1,−1e− 8) allowed for a flexible survival function that captured a large range of cure fractions and event
rates (Figure 1). Priors were centered at the middle of the intervals stated above with standard deviations approximately one-third the interval width (Code 3):

log(µ)∼ Normal(−4.5, 12) , γ∼ Normal(−0.05, 0.032) .

With custom Stan functions and the custom brms family in place, model-fitting was done in the usual way with brms, making sure to pass the custom functions to
Stan (Code 4). After log_lik() and posterior_predict() were made available to the R environment with expose_functions() (Code 4), post-processing
was done with typical brms tools.
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Source code: cure−rate−brms−acop.Rmd
Source graphic: deliv/priors_g.pdf

Figure 1. Survival function for a selection of Gompertz distribu-
tion parameter values.

p r i o r s <− brms : : p r i o r ( normal (−4.5 , 1) , c l a s s = " I n t e r c e p t " ) +
brms : : p r i o r ( normal (−0.05 , 0 .03) , c l a s s = "gamma" )

Code 3. Cure rate priors for Gompertz family.

f i t <− brms : : brm(
formula = time | cens (1 − s t a t u s ) ~ 1 ,
fami ly = gompertz ,
p r i o r = pr io r s ,
data = dat ,
s t anva r s = brms : : s tanvar ( scode = s tan _ funs , b lock = " f unc t i on s " )

)

brms : : expose_ func t i on s ( f i t , v e c t o r i z e = TRUE)

Code 4. Gompertz family brms fit.

Results

The Kaplan-Meier curve plateaued
at 41%, consistent with 40% of
the simulated population being in-
susceptible to the event of interest
(Figure 2).

Of the four tested models, the Gom-
pertz model was selected by the
ELPD model criterion as the most
favorable and had an ELPD value
more than three standard errors
higher than the second most favor-
able model (Table 1).
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Figure 2. Kaplan-Meier curve of simulated data.

Model ELDP SEELPD ∆ELPD SE∆ELPD

Gompertz -1487.1 49.5 0.00 0.00

Lognormal -1497.8 49.8 -10.7 3.06

Weibull -1511.3 50.1 -24.3 5.23

Exponential -1530.7 50.5 -43.6 9.57

ELPD: leave-one-out expected log pointwise predictive density

SEELPD: standard error of ELPD
∆ELPD: difference between ELPD and most favorable ELPD
SE∆ELPD: standard error of∆ELPD
Source code: cure-rate-brms-acop.Rmd
Source file: criterion.texTable 1. Model criterion.

Posterior predictive checks demonstrated the inability of standard survival models to adequately char-
acterize the insusceptible proportion of subjects, with events overpredicted in the latter part of the
simulated study (Figure 3). The Gompertz model did not suffer from such overprediction and charac-
terized the data well (Figure 4).
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Figure 3. Lognormal model posterior predictive
check.
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Figure 4. Gompertz model posterior predictive
check.

The Gompertz model esti-
mated that 36.8% of the
population was insuscepti-
ble to the event of inter-
est, consistent with the 40%
used in the simulated data
(Table 2).

Parameter Estimand Estimate 95% Credible Interval

shape log(µ) -2.93 (-3.08, -2.80)

scale γ -0.0531 (-0.0670, -0.0397)

cure rate exp(µ/γ) 0.368 (0.215, 0.502)

Source code: cure-rate-brms-acop.Rmd
Source file: param-table.texTable 2. Gompertz model parameter estimates.

Conclusion
The Gompertz brms family enables time-to-event exposure-response modeling in a Bayesian framework,
allowing for a proportion of the population to never have an event. The custom family allows model-fitting,
covariate effects, and post-processing inference to proceed in the usual brms workflow.
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