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Objectives: Pharmacometric and systems pharmacology models are often modular as The model salad framework was demonstrated through a number of applications. A generic integrated model including viral kinetics, drug PK, and immune response components
different, independent components can be joined together to form a more complex model. was created (Figure 3), and the model predictions showed the decrease in viral load as a response to the drug and immune response effects (Figure 4). The framework’s flexibility
The process of combining and reusing model components can be challenging with no allows for the creation of other models by exchanging the different model components with alternative viral kinetics models, different PK models for different drugs, and different
clear framework and, as such, investigators often resort to rewriting models from scratch models for the immune response. A generic PBPK DDI model was created by combining the PBPK models of the victim and perpetrator drugs (Figure 5). The victim drug exposure
rather than reusing the individual components. Additionally, model components could be was simulated showing an increased exposure when co-administered with the perpetrator that inhibits the victim drug metabolism (Figure 6). The framework allows for exchanging
written in different notations such as ordinary differential equations (ODESs) or reactions, different victim and different perpetrator drug PBPK models. The proposed framework flexibility also allows for combining ODEs and reactions, which was demonstrated using a

depending on the most convenient way to represent a system. This adds an additional generic PKPD model of a monoclonal antibody (mAb) binding to a soluble receptor where the mAb PK was represented as ODEs while the PD binding component was represented as
complexity to the model composition process. A model salad framework is presented that reactions (Figure 7). mAb and receptor conentration-time profiles demonstrated the expected behavior (Figure 8). A published model of a bispecific mAb that targets CD3 receptors

allows an investigator to seamlessly combine different model components represented in on T-cells and P-cadherin on tumor cells was used to demonstrate the model salad framework [4]. The independent model components were a tumor growth model, a T-cell dynamics
their respective notations and reuse these independent components to create multiple model, a tumor microenvironment (TME) binding model, and a drug PK model. The different components were combined to create different models to accommodate for the different
combinations of integrated models, just like mixing the components of a salad. settings. As such, the tumor growth and TME models were combined to create the in vitro model, the tumor growth, TME, T-cell dynamics, and the drug PK models were combined
Methods: Julia [1] open-source tools, namely ModelingToolkit.jl [2] and Catalyst.jl [3], to create the in vivo mouse model, and the tumor growth, TME, and drug PK models were combined to create the human model (Figure 9). Drug PK prediction at different doses (0.5
were used to present a convenient framework for pharmacometric model composition. and 0.05 mg/kg) and validation against observed data from the in vivo model and tumor trimer concentration from the human model at different doses (0.01, 0.1, and 1 ug/kg) were

The symbolic-numeric model representation of ModelingToolkit.jl and the reaction no- shown in Figure 10.
tation provided by Catalyst.jl allowed for seamless composition of independent model
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 ModelingToolkit.jl. This package allows for the symbolic-numeric model represen-

tation.
. ! Figure 5. PBPK DDI Model Salad. Independent PBPK models for the victim and perpetra-
e Catalyst.jl. This package allows for representing models using reaction notation. TE' 10000 fr c o 1.00x10 tor drugs were combined to create a DDI model where the perpetrator drug has an inhibitory
5 -_8 A effect on the victim drug metabolism. PU, LI, GU, FA, PP and RP represent the lungs, liver,
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Figure 4. Integrated Viral Dynamics Model Simulation Results. The integrated model S r/
simulation results showing the dynamics of the viral load (left), the drug concentration in = 0.2¢
: the central compartment (middle), and the immune response (right). ‘g 0.1+
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Figure 1. Model Salad Bar. Different models can be composed together to create more . . o o .
complex models using Julia tools. PK represents pharmacokinetic models and PD represents Figure 6. PBPK DDI Model Simulaton Result. Victim drug concentration-time profile
pharmacodynamic models. ksyn R kdeg when administered alone (blue - no DDI) or with the perpetrator drug (red - DDI). The
—> @:;. — figure shows the DDI effect that results in a higher victim drug exposure.
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Figure 7. Monoclonal Antibody PKPD Model Salad. Generic monoclonal antibody (mAb)
CL PK and PD model components were combined to create an integrated PKPD model. The PK . . . _ . . Human
C —> model is a two-compartment mAb model that was represented as ODEs and the PD model Figure 9. Bispecific {{ntlbod.y Model Salad. Different independent quel corpponents
is mass action binding kinetics of the mADb to a soluble receptor represented as reactions. were cor.np(?sed to b.u11d th.e t vitro model (Tumor growth + Tumor m1croeny1ronment
(TME) binding reactions), in vivo mouse model (Tumor growth + T-cell dynamics + TME
binding + Drug PK), and human model (Tumor growth + TME binding + Drug PK).
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The PK and PD models were built using ModelingToolkit.jl where a function was created to Time (day) Time (day) ° O R o B 0 e 0
include the model components defined as blocks (parameters, variables, and equations) . o . . . . .
and returned an ODE system. The model objects were created by calling the function. Figure 8. Monoclonal Antibody PKPD Model Salad. Generic monoclonal antibody (mAb) F1gur.e 10. Bispecific Antibody MOde.l Sll:ﬂlllﬂthH Results. Th.e simulation results ﬁ.rom
. : : : C " . . | . the different created models show the in vivo mouse model predicted drug concentration-
Finally, the PK and PD models were combined using the convenient function "extend". PK and PD model components were combined to create an integrated PKPD model. The PK : . . . :
: : . . C . oo , time profiles for 0.5 and 0.05 mg/kg doses (lines) and validated against observed data
The algebraic model structure was simplified using the function "structural simplify". The model is a two-compartment mAb model that was represented as ODEs and the PD model . : : L
: . — : . e o : (points) (A) and tumor trimer predicted concentrations in humans for 0.01, 0.1, and 1
following code demonstrates the steps to build the PK model and how the PK and PD is mass action binding kinetics of the mAb to a soluble receptor represented as reactions. ug/kg doses (B)
models were combined together.
function PK(; name) function PD(; name)
pars = @parameters begin pars = @parameters begin
CL=0.3 R=5. 0 Conclusion
V=1.0 kout=1.0
end 1C50=5.0 This work demonstrated a framework that utilized open-source Julia tools (ModelingToolkit.jl and Catalyst.jl) to integrate independent models into more complex models in a
end seamless way and to combine models described as differential equations and reactions. The convenience and flexibility of the proposed framework allows investigators to build

@independent_variables t

D = Differential(t) @independent_variables t
D = Differential(t)

complex pharmacometric and QSP models from simple components, reduces the errors that may result from copying code, and minstreams the quality control process.
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