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Abstract
Forest plots, typically formulated as Certeris Paribus, are a commonly used tool to understand covariate
relationships in population pharmacokinetic (Pop-PK) modeling. However, these types of forest plots
can be misinterpreted leading to unsupported conclusions, particularly, for dosing decisions in clinically-
relevant subpopulations. This is often due to the “Table 2 Fallacy” where parameter estimates are
conflated with causal effects [1, 2]. To address these limitations, we applied multiple types of Shapley
Additive Explanations (SHAP), a tool from the field of interpretable machine learning, to Pop-PK models
for comparing conclusions from different methods and visually interpreting model inferences.

Example 1: Saturable PK
Methods

• Simulated data from a two-compartment Pop-PK model where clearance is saturable
with the half-maximum concentration dependent on EGFR:
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• Allometric scaling on other flows and volumes

• Simulated dosing every 12 hours, with negligible accumulation

• Analyzed area under the concentration-time curve (AUC) as a summary exposure met-
ric

Results
• SHAP analysis identified differing effects of eGFR depending on weight

and much larger effects when eGFR and weight are on the tails of the
dataset

Figure 1: Forest Plot. Traditional forest plot shows a small effect of eGFR (3%), and a total
weight plus eGFR effect of up to 20% (16% + 4%), relative to a reference patient with a
weight of 70 kg and 86 mL/min/1.73m2
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Figure 2: SHAP Covariate Analysis There was an interaction between weight and EGFR,
showing much lower AUCs for high weight. Relative differences were up to 65%,compared
to the reference. In addition, there is non-linearity in the effect of EGFR.
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Example 2: Causal Covariates
Methods

• Three covariates were simulated, each standard normal but with a
specific causal dependence structure:

E[X1] = 0

E[X2] = 0.3× X1

E[X3] = 0.8× X2

log(CL) = log(TVCL) + 0.75× log
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• Data was simulated from a 2-compartment PK model, with 1 input
covariate (X2) and allometric scaling for weight

• Causal Shapley Values [2, 3] and population simulations were
used to analyze differences across the population in the summary
exposure metric of Cmax

Figure 3: Covariate and PK model. Only one covariate, X2, enters the PK
model.
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Results

• The analysis methods provide different conclusions for which covariates impact Cmax

• Several plots and associated smooths (blue lines) are "correct," each to support different conclusions

• Asymmetric causal Shapley Values best reconstructed the known causal structure

– Direct effect: Holding all other variables constant, the difference in Cmax for varying this covariate

– Total effect: The effect on Cmax from varying this covariate, accounting for changes in covariates as a result of
varying this covariate

Figure 4: Marginal Shapley Values. Shows predictive effects only
and splits the effect between the potential covariates.
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Figure 5: Asymmetric Causal Shapley Values. Correctly identifies
total causal effects.
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Figure 6: Parameter Values Forest Plot. Parameter estimates in the
simulated model, visualized as a forest plot.
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Figure 7: Population Simulation. Shows predictive effects and 90%
prediction intervals within subpopulations. Covariates that do not
have a causal effect can still have different distributions of Cmax
across quartiles and, therefore, can be used for population adjustment.
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Conclusion
• Shapley values can be used to analyze PK and PKPD models in addition to black-box AI/ML

models, and support conclusions beyond those supported by forest plots:

– Identification of potential meaningful subpopulations and interactions which univariate for-
est plots may not identify

– Support identification of correlation versus causation within complex models and causal
assumptions

– As a technique to bridge between AI/ML modeling strategies and established PKPD NLME
approaches

• In the presence of causal dependence in covariates, parameter estimates (and forest plots of
parameter estimates) were not sufficient for making decisions about dose adjustments

– Features used for dose adjustments do not need to be included in a model nor have significant
effects

• The analysis question of interest is critical for choosing appropriate model visualizations to assess
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