

Boston Society for Cell & Gene Therapy

Making Drugs from T Cells: Model-Informed Design and Deployment of T Cell Therapies

> Daniel Kirouac Quantitative Systems Pharmacology Metrum Research Group Mar 20, 2025

What is the value of mathematical modeling?

In the context of cell therapy engineering and clinical development

The biological mechanisms underlying experimental data are often complex and non-intuitive

Pharmacology of Autologous T cell therapies is highly variable

... This is problematic for drug development

Pharmacology of Autologous T cell therapies is highly variable

... This is problematic for drug development. E.g. Multi-arm (umbrella) trials

Studying Multiple Versions of a Cellular or Gene Therapy Product in an Early-Phase Clinical Trial

Guidance for Industry

FDA, 2022

Minimum N vs. Effect-size & variance

www.nature.com/nbt/November 2023 Vol. 41 No. 11

nature biotechnology

CAR-T Pharmacology

Model based inference: How do dynamic interactions between CAR-Ts, tumor and patient lymphocytes drive exposure, response, and patient variability?

Kirouac, Zmurchok et al. (2023). Deconvolution of clinical variance in CAR-T pharmacology and response. *Nature Biotechnology* **41**:1606–1617.

Kirouac, Zmurchok & Morris (2024). Making drugs from T cells. *npg Systems Biology & Applications* **10**: 31.

Mathematical models of T cell regulation

Model Training Data

PKPD profiles, CAR-T product transcriptomes and immuno-phenotypes vs. response

Population mean PKPD: Kymriah in Chronic Lymphoblastic Leukemia (CLL)

- Can we recapitulate the pharmacokinetics & tumor dynamics (PKPD) based on T cell biology?
- What kinetic parameters / molecular features distinguish robust vs. poor responding patients?

Fraietta JA, Lacey SF, Orlando EJ, et al (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563–571.

Pre-infusion CAR-T transcriptomes

CR=5, PR =5, NR=21

'Toggle switch' model structure and assumptions

ON

 10^{12}

 10^{10}

- T_M: memory T cells
- T_E: effector T cells
- T_X: exhausted T cells
- B: B cells (tumor)
- B_A: B cell antigen

T cell differentiation toggle switch

Low antigen (B_A) levels
T_M self-renewal
¹⁰⁰
⁸⁰

OFF

10⁸

60

40

20

 10^{6}

- T_M regeneration from T_E
- High antigen (B_A) levels
 - T_M differentiation
 - T_E proliferation
 - T_E exhaustion (T_X)
- T effectors kill B-cells
- N cell divisions within T_E compartment

Model development and validation workflow

RESEARCH GROUP

What features (parameters) separate clinical outcomes?

What differentiates responders (CR) vs. nonresponders (NR) ?

CAR-T products in CR vs. NR show:

- 1. Heightened memory cell turnover (μ_M , d_M)
- 2. Heightened cytotoxic potency (TK50)
- 3. Little difference in Tmem/Texh frequency

*Assume Dose = 10⁸ cells, Tumor burden = 10¹⁰ cells (median reported); Estimate parameters using PSO: simulations represent 90% confidence intervals

Scale counts/ug to cell/uL using data from: Kalos, M. et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med 3, 95ra73-95ra73 (2011).

Validation of model inferences via Clinical PKPD Data

Prediction: Tmem from CR-CART products have heightened intrinsic proliferative capacity

*Liu C, Ayyar VS, Zheng X, et al (2020) Model-based Cellular Kinetic Analysis of Chimeric Antigen Receptor-T Cells in Humans. Clin Pharmacol Ther. 109(3):716-727 *Locke FL, Rossi JM, Neelapu SS, et al (2020) Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv 4:4898–4911.

Can we predict response based on pre-infusion transcriptomes? Page 11

RESEARCH GROUP

Can we predict response based on pre-infusion transcriptomes?

Much better than expected by change, and better than immunophenotyping

CR/NR/PR classes

CR = 5; NR/RL = 7

CR = 6; NR = 7

CR = 11: NR = 8

PR 🔴 NR

Kymriah in LBCL

Yescarta in LBCL

CR

Kymriah in ALL

Functional attributes predictive of clinical outcomes are CART-cell-intrinsic & indication-agnostic Transcriptome > 'gold standard' immunophenotyping

What transcriptional features predict response?

Multivariate predictive biomarkers

CAR-T Response Score-card

Method-agnostic modelling

Dynamical systems modelling, bioinformatics and machine learning

Motivation

If we can identify functional attributes of CAR-Ts which result in robust exposure & clinical response, Then we can design these attributes into products

Key finding

Not all memory cells are created equal: Tmem associated with non-durable response display functional defects characteristic of exhaustion – reduced proliferative and functional capacity

Translational (T cell) pharmacology

Quantifying & predicting T cell potency

Quantifying T cell potency from co-culture assays

Data quantification & compression

k_killkilling rate (hr-1)E50EC50 effector cell killing (cells)KeHill coefficient of cell killing

k ex

Exhaustion rate (hr⁻¹)

Model-based inference from serial-killing assay data

Cytotioxc potency, Proliferation & exhaustion can be inferred using 'simple' models

Utility: We can map the effect of molecular perturbations to functional kinetic parameters

T Cell Biodistribution:

the elephant in the (CART pharmacology) room

We can model tissue distribution

...but we don't have the data to constrain the models or make predictions

10² biodistribution contraction expansion CAR-T (cells/uL) persistence 10 10⁰ LLQ LLQ 10⁻¹ 20 0 10 30 0 100 200 300 time (day) time (day)

CAR-T pharmacokinetics: 4 phases

* biodistribution phase is poorly characterized

Tissue distribution can dominate T cell pharmacokinetics

PKPD model of Kymriah-Responders with tissue-distribution incorporated

Model remixing for the next phase of CAR-T clinical development

How to position cell therapies for autoimmunity & beyond?

Model of TCE PKPD in Lymphoma

npj Systems Biology and Applications

www.nature.com/npjsb

ARTICLE OPEN (Check for updates Mitigating the risk of cytokine release syndrome in a Phase I trial of CD20/CD3 bispecific antibody mosunetuzumab in NHL: impact of translational system modeling trai Hosseini¹, Kapil Gadkar¹, Eric Stefanich¹, Chi-Chung Li¹, Liping L. Sun¹, Yu-Wave Chu¹ and Saroja Ramanujan ¹⁵³

Model of CAR-T PKPD in Lupus

Clinical and Translational Science

Mechanistic Evaluation of Anti-CD19 CAR-T Cell Therapy Repurposed in Systemic Lupus Erythematosus Using a Quantitative Systems Pharmacology Model

Hyunseo Park^{1,2} | Ganesh M. Mugundu¹ | Aman P. Singh¹

Model of Lupus disease progression

ARTICLE

Disease trajectory of SLE clinical endpoints and covariates affecting disease severity and probability of response: Analysis of pooled patient-level placebo (Standard-of-Care) data to enable model-informed drug development

Kosalaram Goteti¹ | Jonathan French² | Ramon Garcia² | Ying Li¹ | Florence Casset-Semanaz¹ | Aida Aydemir¹ | Robert Townsend¹ | Cristina Vazquez Mateo¹ | Matthew Studham¹ | Oliver Guenther³ | Amy Kao¹ | Marc Gastonguay² | Pascal Girard⁴ | Lisa Benincosa¹ | Karthik Venkatakrishnan¹

Model of CAR-T PKPD in lymphoma

In Silico clinical trials for head-to-head comparisons

000

RESEARCH GROUP

What is the value of mathematical modeling?

In the context of cell therapy engineering and clinical development

