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Many “validated” environments are inflexible, monolithic, and 
fall out of date rapidly



Moving Fast without 
Breaking Things



How is the 
R ecosystem 
designed?





Misconception #1 

Packages are isolated entities



Packages are 
interwoven





DESCRIPTION

•Depends – required + loaded
•Imports - required
•Suggests – optional for some funcs
•LinkingTo – required (usually c++ 
related)
•SystemRequirements - required



Packages can have system dependencies

how to install them is NOT communicated in the DESCRIPTION file



Takeaway #1 

Think of the surface area change 
when adding/changing 
package(s)



github.com/<org>/<repo>/compare/<start>…<end>
github.com/tidyverse/dplyr/compare/v0.7.4…v0.7.6

tools::packageDependencies()
r-lib/desc



Misconception #2 

Packages on CRAN all work 
together









Correction:

The most recent version of all 
packages on CRAN (should) work 
together



Takeaway(s) #2 

Think in terms of package cohorts. 

Avoid mismatch in package sets 
over time





Github – a collaborative, social space to share code



githu
b





Upgrading packages in production



Takeaway(s) #3 

When pulling in a ”single” github 
package, identify what else will 
come in from outside CRAN



Takeaway #1 

Think of the surface area change 
when adding/changing 
package(s)





https://github.com/metrumresearchgroup/pkgchec
k



Takeaway #3 

check compatibility and track full 
dependency trees



Cohort management
packrat
…
Package: hms
Source: CRAN
Version: 0.4.2
Hash: b4096a4f6a6736138e9a825c2baaacf0
Requires: pkgconfig, rlang

Package: htmltools
Source: CRAN
Version: 0.3.6
Hash: b24df7ea0856eab6618f6a56016d940d
Requires: Rcpp, digest

Package: htmlwidgets
Source: CRAN
Version: 1.2
Hash: de18b75f31630089b22e30d4b188cfbe
Requires: htmltools, jsonlite, yaml
…

• switchr
• jetpack
• packrat
• containerit



Tooling evolution - Cohort generation
builds on r-lib/pkgdepends (very experimental)



Takeaway #4 

consider building cohorts 
immutably, check compat, then use 
lockfiles to create “production” 
environments



How to 
Move 
Fast(er)?



Invest in training and process improvement



Take Advantage of Tools and Add-ons

•usethis
•datapasta
•remedy
•sinew
•covr
•custom scaffolding functions 



use_package("MASS", "Suggests") 
#> ✔ Adding 'MASS' to Suggests field in DESCRIPTION 
#> ● Use `requireNamespace("MASS", quietly = TRUE)` to test if package is installed 
#> ● Then use `MASS::fun()` to refer to functions. 

use_dev_package("callr")
 #> ✔ Adding 'callr' to Imports field in DESCRIPTION 
 #> ✔ Adding 'r-lib/callr' to Remotes field in DESCRIPTION

use_roxygen_md() 
#> ✔ Setting Roxygen field in DESCRIPTION to 'list(markdown = TRUE)’ 
#> ✔ Setting RoxygenNote field in DESCRIPTION to '6.1.0’ 
#> ● Run `devtools::document()` 

use_rcpp() 
#> ✔ Adding 'Rcpp' to LinkingTo field in DESCRIPTION
#> ✔ Adding 'Rcpp' to Imports field in DESCRIPTION 
#> ✔ Creating 'src/’ 
#> ✔ Adding '*.o', '*.so', '*.dll' to 'src/.gitignore’ 
#> ● Include the following roxygen tags somewhere in your package 
#> #' @useDynLib mypkg, .registration = TRUE 
#> #' @importFrom Rcpp sourceCpp 
#> ● Run `devtools::document()`





Optimal Organizational Efficiency

Define package management strategies
Move scripts to packages, use tests

Utilize (modern) version control platform
Encourage testing within user-defined code

Provide tools to automate rote tasks
Incorporate Code Reviews and Retrospectives
Continuously Integrate versioned code

Standardize logging and monitoring solutions

Automate Automate Automate
Embrace Continual Deployment



devinp@metrumrg.com
@dpastoor on github
@devinpastoor on twitter



backup





Package (version) Assessment Checklist
• What is the package needed for? Upgrading an inflight project vs new project.

• Where is the package coming from?
• If not from CRAN, how much new development has been done?
• What is the additional packaging surface area? (new dependencies)

• Are there any new and/or remote dependencies?

• What does the package do?
• Methodology? Data manipulation? 
• How easy will it be to tell if the package is not accurate? 

• What is the package pedigree?
• Who created it?
• How active/responsive are they?
• Have they communicated future plans about features/maintenance?

• What checks are in place to prevent regressions and demonstrate the package will continue to do 
what it says it does?
• Tests
• Community Engagement


