
Moving Fast without 
Breaking Things

Devin Pastoor
Senior Director Engineering Services





Many “validated” environments are inflexible, monolithic, and 
fall out of date rapidly



Moving Fast without 
Breaking Things



How is the 
R ecosystem 
designed?





Misconception #1 

Packages are isolated entities



Packages are 
interwoven





DESCRIPTION

•Depends – required + loaded
•Imports - required
•Suggests – optional for some funcs
•LinkingTo – required (usually c++ 
related)
•SystemRequirements - required



Packages can have system dependencies

how to install them is NOT communicated in the DESCRIPTION file



Takeaway #1 

Think of the surface area change 
when adding/changing 
package(s)



github.com/<org>/<repo>/compare/<start>…<end>
github.com/tidyverse/dplyr/compare/v0.7.4…v0.7.6

tools::packageDependencies()
r-lib/desc



Misconception #2 

Packages on CRAN all work 
together









Correction:

The most recent version of all 
packages on CRAN (should) work 
together



Takeaway(s) #2 

Think in terms of package cohorts. 

Avoid mismatch in package sets 
over time





Github – a collaborative, social space to share code



githu
b





Upgrading packages in production



Takeaway(s) #3 

When pulling in a ”single” github 
package, identify what else will 
come in from outside CRAN



Takeaway #1 

Think of the surface area change 
when adding/changing 
package(s)





https://github.com/metrumresearchgroup/pkgchec
k



Takeaway #3 

check compatibility and track full 
dependency trees



Cohort management
packrat
…
Package: hms
Source: CRAN
Version: 0.4.2
Hash: b4096a4f6a6736138e9a825c2baaacf0
Requires: pkgconfig, rlang

Package: htmltools
Source: CRAN
Version: 0.3.6
Hash: b24df7ea0856eab6618f6a56016d940d
Requires: Rcpp, digest

Package: htmlwidgets
Source: CRAN
Version: 1.2
Hash: de18b75f31630089b22e30d4b188cfbe
Requires: htmltools, jsonlite, yaml
…

• switchr
• jetpack
• packrat
• containerit



Tooling evolution - Cohort generation
builds on r-lib/pkgdepends (very experimental)



Takeaway #4 

consider building cohorts 
immutably, check compat, then use 
lockfiles to create “production” 
environments



How to 
Move 
Fast(er)?



Invest in training and process improvement



Take Advantage of Tools and Add-ons

•usethis
•datapasta
•remedy
•sinew
•covr
•custom scaffolding functions 



use_package("MASS", "Suggests") 
#> ✔ Adding 'MASS' to Suggests field in DESCRIPTION 
#> ● Use `requireNamespace("MASS", quietly = TRUE)` to test if package is installed 
#> ● Then use `MASS::fun()` to refer to functions. 

use_dev_package("callr")
 #> ✔ Adding 'callr' to Imports field in DESCRIPTION 
 #> ✔ Adding 'r-lib/callr' to Remotes field in DESCRIPTION

use_roxygen_md() 
#> ✔ Setting Roxygen field in DESCRIPTION to 'list(markdown = TRUE)’ 
#> ✔ Setting RoxygenNote field in DESCRIPTION to '6.1.0’ 
#> ● Run `devtools::document()` 

use_rcpp() 
#> ✔ Adding 'Rcpp' to LinkingTo field in DESCRIPTION
#> ✔ Adding 'Rcpp' to Imports field in DESCRIPTION 
#> ✔ Creating 'src/’ 
#> ✔ Adding '*.o', '*.so', '*.dll' to 'src/.gitignore’ 
#> ● Include the following roxygen tags somewhere in your package 
#> #' @useDynLib mypkg, .registration = TRUE 
#> #' @importFrom Rcpp sourceCpp 
#> ● Run `devtools::document()`





Optimal Organizational Efficiency

Define package management strategies
Move scripts to packages, use tests

Utilize (modern) version control platform
Encourage testing within user-defined code

Provide tools to automate rote tasks
Incorporate Code Reviews and Retrospectives
Continuously Integrate versioned code

Standardize logging and monitoring solutions

Automate Automate Automate
Embrace Continual Deployment



devinp@metrumrg.com
@dpastoor on github
@devinpastoor on twitter



backup





Package (version) Assessment Checklist
• What is the package needed for? Upgrading an inflight project vs new project.

• Where is the package coming from?
• If not from CRAN, how much new development has been done?
• What is the additional packaging surface area? (new dependencies)

• Are there any new and/or remote dependencies?

• What does the package do?
• Methodology? Data manipulation? 
• How easy will it be to tell if the package is not accurate? 

• What is the package pedigree?
• Who created it?
• How active/responsive are they?
• Have they communicated future plans about features/maintenance?

• What checks are in place to prevent regressions and demonstrate the package will continue to do 
what it says it does?
• Tests
• Community Engagement


